Module: headingSuKF
Executive Summary
This module implements and tests a Switch Unscented Kalman Filter in order to estimate an arbitrary heading direction.
More information on can be found in the
PDF Description
Message Connection Descriptions
The following table lists all the module input and output messages. The module msg connection is set by the user from python. The msg type contains a link to the message structure definition, while the description provides information on what this message is used for.
Msg Variable Name |
Msg Type |
Description |
---|---|---|
opnavDataOutMsg |
output message with opnav information |
|
filtDataOutMsg |
output message with filter state data information |
|
opnavDataInMsg |
optical navigation input message |
|
cameraConfigInMsg |
(optional) camera configuration input message |
Functions
-
void SelfInit_headingSuKF(HeadingSuKFConfig *configData, int64_t moduleID)
This method initializes the configData for the heading estimator. It checks to ensure that the inputs are sane and then creates the output message
- Parameters:
configData – The configuration data associated with the heading estimator
moduleID – The module identifier
-
void Update_headingSuKF(HeadingSuKFConfig *configData, uint64_t callTime, int64_t moduleID)
This method takes the parsed heading sensor data and outputs an estimate of the sun vector in the ADCS body frame
- Parameters:
configData – The configuration data associated with the heading estimator
callTime – The clock time at which the function was called (nanoseconds)
moduleID – The module identifier
-
void Reset_headingSuKF(HeadingSuKFConfig *configData, uint64_t callTime, int64_t moduleID)
This method resets the heading attitude filter to an initial state and initializes the internal estimation matrices.
- Parameters:
configData – The configuration data associated with the heading estimator
callTime – The clock time at which the function was called (nanoseconds)
moduleID – The module identifier
-
void headingSuKFTimeUpdate(HeadingSuKFConfig *configData, double updateTime)
This method performs the time update for the heading kalman filter. It propagates the sigma points forward in time and then gets the current covariance and state estimates.
- Parameters:
configData – The configuration data associated with the heading estimator
updateTime – The time that we need to fix the filter to (seconds)
-
void headingSuKFMeasUpdate(HeadingSuKFConfig *configData, double updateTime)
This method performs the measurement update for the heading kalman filter. It applies the observations in the obs vectors to the current state estimate and updates the state/covariance with that information.
- Parameters:
configData – The configuration data associated with the heading estimator
updateTime – The time that we need to fix the filter to (seconds)
-
void headingStateProp(double *stateInOut, double *b_vec, double dt)
This method propagates a heading state vector forward in time. Note that the calling parameter is updated in place to save on data copies.
- Parameters:
stateInOut – The state that is propagated
b_Vec – pointer to b vector
dt – time step
-
void headingSuKFMeasModel(HeadingSuKFConfig *configData)
This method computes what the expected measurement vector is for each opnave measurement. All data is transacted from the main data structure for the model because there are many variables that would have to be updated otherwise.
- Parameters:
configData – The configuration data associated with the heading estimator
-
void headingSuKFComputeDCM_BS(double heading[HEAD_N_STATES], double bVec[HEAD_N_STATES], double *dcm)
-
void headingSuKFSwitch(double *bVec_B, double *states, double *covar)
This method computes the dcms necessary for the switch between the two frames. It the switches the states and the covariance, and sets s2 to be the new, different vector of the body frame.
- Parameters:
bVec_B – Pointer to b-vector
states – Pointer to the states
covar – Pointer to the covariance
-
struct HeadingSuKFConfig
- #include <headingSuKF.h>
Top level structure for the SuKF heading module data.
Public Members
output message
-
HeadingFilterMsg_C filtDataOutMsg
output message
input message
-
CameraConfigMsg_C cameraConfigInMsg
(optional) input message
-
int putInCameraFrame
[-] If camera message is found output the result to the camera frame as well as the body and inertial frame
-
int numStates
[-] Number of states for this filter
-
int countHalfSPs
[-] Number of sigma points over 2
-
int numObs
[-] Number of measurements this cycle
-
double beta
[-] Beta parameter for filter
-
double alpha
[-] Alpha parameter for filter
-
double kappa
[-] Kappa parameter for filter
-
double lambdaVal
[-] Lambda parameter for filter
-
double gamma
[-] Gamma parameter for filter
-
double qObsVal
[-] OpNav instrument noise parameter
-
double rNorm
[-] OpNav measurment norm
-
double dt
[s] seconds since last data epoch
-
double timeTag
[s] Time tag for statecovar/etc
-
double noiseSF
[-] Scale factor for noise
-
double bVec_B[HEAD_N_STATES]
[-] current vector of the b frame used to make frame
-
double switchTresh
[-] Threshold for switching frames
-
double stateInit[HEAD_N_STATES_SWITCH]
[-] State to initialize filter to
-
double state[HEAD_N_STATES_SWITCH]
[-] State estimate for time TimeTag
-
double wM[2 * HEAD_N_STATES_SWITCH + 1]
[-] Weighting vector for sigma points
-
double wC[2 * HEAD_N_STATES_SWITCH + 1]
[-] Weighting vector for sigma points
-
double sBar[HEAD_N_STATES_SWITCH * HEAD_N_STATES_SWITCH]
[-] Time updated covariance
-
double covarInit[HEAD_N_STATES_SWITCH * HEAD_N_STATES_SWITCH]
[-] covariance to init to
-
double covar[HEAD_N_STATES_SWITCH * HEAD_N_STATES_SWITCH]
[-] covariance
-
double xBar[HEAD_N_STATES_SWITCH]
[-] Current mean state estimate
-
double obs[OPNAV_MEAS]
[-] Observation vector for frame
-
double yMeas[OPNAV_MEAS * (2 * HEAD_N_STATES_SWITCH + 1)]
[-] Measurement model data
-
double postFits[OPNAV_MEAS]
[-] PostFit residuals
-
double SP[(2 * HEAD_N_STATES_SWITCH + 1) * HEAD_N_STATES_SWITCH]
[-] sigma point matrix
-
double qNoise[HEAD_N_STATES_SWITCH * HEAD_N_STATES_SWITCH]
[-] process noise matrix
-
double sQnoise[HEAD_N_STATES_SWITCH * HEAD_N_STATES_SWITCH]
[-] cholesky of Qnoise
-
double qObs[OPNAV_MEAS * OPNAV_MEAS]
[-] Maximally sized obs noise matrix
-
double sensorUseThresh
— Threshold below which we discount sensors
-
NavAttMsgPayload outputHeading
— Output heading estimate data
— message buffer
-
BSKLogger *bskLogger
BSK Logging.