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1 Model Description
The gravity effector module is responsible for calculating the effects of gravity from a body on a
spacecraft. A spherical harmonics model and implementation is developed and described below. The
iterative methods used for the software algorithms are also described. Finally, the results of the code
unit tests are presented and discussed.

1.1 Relative Gravitational Dynamics Formulation

The gravity effector module is critical to the propagation of spacecraft orbits in Basilisk. In order to
increase the accuracy of spacecraft trajectories, a relative gravitational acceleration formulation can be
used. Relative dynamics keep the acceleration, velocity, and distance magnitudes small, allowing more
bits of a double variable to be used for accuracy, rather than magnitude. This additional accuracy is
compounded via integration. This relative formulation is enforced when a user sets any planet in a
multi-planet environment to have isCentralBody = True.

If no planets in a simulation are set as the central body, then an absolute formulation of gravitational
acceleration is used. In the absolute formulation, acceleration of a spacecraft due to each massive body
is summed directly to calculate the resultant acceleration of the spacecraft.

:rB{N,grav “

n
ÿ

i“1

:rB{N,i (1)

where the accelerations on the right hand side are the acceleration due to the ith planet which is being
modeled as a gravity body. In this absolute mode, spacecraft position and velocity are integrated with
respect to the inertial origin, typically solar system barycenter.

In the relative formulation, the acceleration of the spacecraft is calculated relative to the central
body. This is done by calculating the acceleration of the central body and subtracting it from the
acceleration of the spacecraft.

:rB{C,grav “ :rB{N,grav ´ :rC{N,grav (2)

where C is the central body. In this case, other accelerations of the central body (due to solar
radiation pressure, for instance) are ignored. For relative dynamics, the Basilisk dynamics integrator
uses only relative acceleration to calculate relative position and velocity. The gravity module then
accounts for this and modifies the spacecraft position and velocity by the central body’s position and
velocity after each timestep.

The above relative formulation leads to some questions regarding the accuracy of the dynamics
integration. First, if acceleration due to gravity is being handled in a relative form, but accelerations
due to external foces are handled absolutely, does Basilisk always produce the correct absolute position
and velocity? Second, if dynamic state effectors such as hinged rigid bodies are using the gravitational
acceleration that the spacecraft receives from the gravity module, are their states being integrated
correctly?
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Absolute accelerations (i.e. due to thrust) being integrated alongside the relative gravitational
acceleration is handled easily due to the linearity of integration. In the absolute dynamics formulation
there is:

:rB{N “ :rB{N,grav ` :rB{N,thrust ` :rB{N,SRP ` . . . (3)

and each term can be integrated separately on the right side so that

rB{N “

ż ż

:rB{N,gravdtdt `

ż ż

:rB{N,thrustdtdt `

ż ż

:rB{N,SRPdtdt ` . . . (4)

In the derivation that follows, the double integral to position is used, but the logic holds for the first
integral to velocity as well. Now, because accelerations also add linearly,

:rB{N “ :rB{C ` :rC{N “ :rB{C,grav ` :rC{N,grav ` :rB{N,thrust ` :rB{N,SRP ` . . . (5)

which differs from Eq. 3 in the gravitational acceleration of the spacecraft being split at the acceleration
of the central body. Applying the integrals:

rB{N “ rB{C `rC{N “

ż ż

:rB{C,gravdtdt`rC{N `

ż ż

:rB{N,thrustdtdt`

ż ż

:rB{N,SRPdtdt` . . . (6)

where :rC{N is deliberately double integrated to rC{N to show that it can be removed from both sides
and rB{C can be evaluated using relative gravitation acceleration combined with absolute accelerations
due to external forces:

rB{C “

ż ż

:rB{C,gravdtdt `

ż ż

:rB{N,thrustdtdt `

ż ż

:rB{N,SRPdtdt ` . . . (7)

Once that is done, it is clear that the absolute position can be found by simply adding the position of
the central body to the relative position just found:

rB{N “ rB{C ` rC{N (8)

This is how absolute position and velocity are found in Basilisk when using a relative dynamics formu-
lation: the relative dynamics are integrated and the position and velocity of the central body are added
afterward. The position and velocity of the central body are not integrated by Basilisk, but found from
Spice.

Dynamic state effectors connected to the spacecraft hub can use the relative gravitational accelera-
tion in their calculation for much the same reason. Effector positions and velocities are always integrated
relative to the spacecraft. In fact, the absolute position and velocity of an effector is rarely, if ever,
calculated or used. This is explains why a hinged body experiencing a relative acceleration does not
quickly fall behind the spacecraft which is known to be moving along a course experiencing absolute
gravitational acceleration. Additionally, because the effector is ”pulled along” with the spacecraft when
the spacecraft position is modified by the central body position, the effector sees the effect of absolute
gravitational acceleration as well.

For intricacies related to using absolute vs relative dynamics, see the user manual at the end of this
document.
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Fig. 1: Geometry of the Spherical Harmonics Representation.

1.2 Spherical harmonics gravity model

Gravity models are usually based on solutions of the Laplace equation (∇2Upr̄q “ 0). It is very important
to state that this equation only models a gravity potential outside a body. For computing a potential
inside a body the Poisson equation is used instead.

The spherical harmonic potential is a solution of the Laplace equation using orthogonal spherical
harmonics. It can be derived solving the Laplace equation in spherical coordinates, using the separation
of variables technique and solving a Sturm-Liouville problem. In this work, the solution will be found
using another technique, which essentially follows Vallado’s book.5

For each element of mass dmQ the potential can be written as

dUpr̄q “ G
dmQ

ρQ
(9)

where ρQ is the distance between the element of mass and the position vector r̄ where the potential
is computed. This position vector is usually given in a body-fixed frame. The relation between the
position vector r̄, the position of the element of mass r̄Q and ρQ can be given using the cosine theorem
and the angle α between the two position vectors, as can be appreciated in Figure 1.

ρQ “

b

r2 ` r2Q ´ 2rrQ cospαq “ r

d

1 ´ 2
rQ
r

cospαq `

ˆ

rQ
r

˙2

“ r
a

1 ´ 2γ cospαq ` γ2 (10)

where γ “ rQ{r.
The potential can be obtained by integrating dU through the whole body.

Upr̄q “ G

ż

body

dmQ

r
a

1 ´ 2γ cospαq ` γ2
(11)

If the potential is computed outside the body, γ will always be less than 1, and the inverse of the
square root can be approximated using the Legendre polynomials Plrβs.5 Even though this derivation
does not use the Laplace equation, it still assumes that the potential is computed outside the body.

The Legendre polynomials can be written as

Plrβs “
1

2ll!

dl

dβl
pβ2 ´ 1ql (12)

The potential is

Upr̄q “
G

r

ż

body

8
ÿ

l“0

γlPlrcospαqsdmQ (13)
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The angle α must be integrated. However, the cosine of the angle α can be decomposed using the
geocentric latitude and the longitude associated to vectors r̄ and r̄Q. These angles will be called pϕ, λq

and pϕQ, λQq respectively. Using the addition theorem it is possible to write.5

Plrcospαqs “ PlrsinpϕQqsPlrsinpϕqs ` 2
l

ÿ

m“1

pl ´ mq!

pl ` mq!
pal,ma1

l,m ` bl,mb1
l,mq (14)

where

al,m “ Pl,mrsinpϕQqs cospmλQq (15)

bl,m “ Pl,mrsinpϕQqs sinpmλQq (16)

a1
l,m “ Pl,mrsinpϕqs cospmλq (17)

b1
l,m “ Pl,mrsinpϕqs sinpmλq (18)

where Pl,mrxs are the associated Legendre functions. ”l” is called degree and ”m”, order. The
polynomials can be computed as

Pl,mrβs “ p1 ´ β2q
m
2

dm

dβm
Plrβs (19)

As can be seen, al,m and bl,m must be integrated, but a1
l,m and a1

l,m can be taken outside the
integral. Therefore, it is possible to define

C 1
l,m “

ż

body
p2 ´ δmqrlQ

pl ´ mq!

pl ` mq!
al,mdmQ (20)

S1
l,m “

ż

body
p2 ´ δmqrlQ

pl ´ mq!

pl ` mq!
bl,mdmQ (21)

where δm is the Kronecker delta.
Then

Upr̄q “
G

r

8
ÿ

l“0

C 1
l,0

Plrsinpϕqs

rl
`

G

r

8
ÿ

l“0

l
ÿ

m“1

Pl,mrsinpϕqs

rl
“

C 1
l,m cospmλq ` S1

l,m sinpmλqs (22)

Non-dimensional coefficients Cl,m and Sl,m are usually used

C 1
l,m “ Cl,mRl

refmQ (23)

S1
l,m “CoM Sl,mRl

refmQ (24)

where mQ is the total mass of the body and Rref is a reference radius. If the coefficients Cl,m and
Sl,m are given, the reference radius must be specified. Usually, the reference is chosen as the maximum
radius or the mean radius.4

The potential is then

Upr̄q “
µ

r

8
ÿ

l“0

Cl,0

ˆ

Rref

r

˙l

Plrsinpϕqs `
µ

r

8
ÿ

l“0

l
ÿ

m“1

ˆ

Rref

r

˙l

Pl,mrsinpϕqs
“

Cl,m cospmλq ` Sl,m sinpmλq
‰

(25)
Since Plrxs “ Pl,0rxs the potential can be written in a more compact way

Upr̄q “
µ

r

8
ÿ

l“0

l
ÿ

m“0

ˆ

Rref

r

˙l

Pl,mrsinpϕqs
“

Cl,m cospmλq ` Sl,m sinpmλq
‰

(26)
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Some coefficients have a very interesting interpretation.

C0,0 “ 1 (27)

Sl,0 “ 0 @l ě 0 (28)

C1,0 “
ZCoM

Rref
(29)

C1,1 “
XCoM

Rref
(30)

S1,1 “
YCoM
Rref

(31)

where rXCoM, YCoM, ZCoMs represents the center of mass of the celestial body. Therefore, if the
origin of the coordinate system coincides with the center of mass, all these coefficients are identically
zero. Similarly, the second order coefficients are related to the second order moments (moments of
inertia).

Finally, the coefficients and Legendre polynomials are usually normalized to avoid computational
issues. The factor Nl,m is called the normalization factor

Nl,m “

d

pl ´ mq!p2 ´ δmqp2l ` 1q

pl ` mq!
(32)

The normalized coefficients are

C̄l,m “
Cl,m

Nl,m
(33)

S̄l,m “
Sl,m

Nl,m
(34)

The normalized associated Legendre functions are

P̄l,mrxs “ Pl,mrxsNl,m (35)

The potential may be written as

Upr̄q “
µ

r

8
ÿ

l“0

l
ÿ

m“0

ˆ

Rref

r

˙l

P̄l,mrsinpϕqs
“

C̄l,m cospmλq ` S̄l,m sinpmλq
‰

(36)

1.2.1 Pines’ Representation of Spherical Harmonics Gravity

There are many ways to algorithmically compute the potential and its first and secondary derivatives.
One of such algorithms is the one proposed by Pines.2

The spherical harmonics representation as it was presented has a singularity at the poles for the
gravity field. The Pines’ formulation avoids this problem and is more numerically stable for high degree
and high order terms.

Unfortunately, this formulation does not contain the normalization factor which is necessary if the
coefficients are normalized. In a paper written by Lundberg and Schutz,1 a normalized representation
of the Pines’ formulation is given, but it contains an approximation.

For this work, and in order to code the spherical harmonics formulation, a formulation similar to
Pines’ using the Lundberg-Schutz paper will be derived. However, no approximations will be used.
Therefore, the algorithm will be developed here without using the exact formulations given in those
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papers. For the sake of brevity, not every single derivation will be carried out, but it is possible to get
the results following the expressions obtained in this section.

In the Pines’ formulation the radius and the director cosines are used as coordinates. The potential
will be given as U rr, s, t, us, where

r “
a

x2 ` y2 ` z2 (37)

s “
x

r
(38)

t “
y

r
(39)

u “
z

r
(40)

For a function of these coordinates, the dependance will be given using square brackets (e.g.
f rr, s, t, us).

Since u “ sinpϕq “ cosp90˝ ´ ϕq, it is possible to write

Pl,mrsinpϕqs “ Pl,mrus (41)

The derived Legendre functions Al,mrus are defined such that

Pl,mrus “ p1 ´ u2q
m
2 Al,mrus (42)

From the definition of Pl,m (Equation 19), it is possible to write

Al,mrus “
dm

dum
Plrus “

1

2ll!

dl`m

dul`m
pu2 ´ 1ql (43)

The term p1 ´ u2q
m
2 can be written as p1 ´ sin2pϕqq

m
2 “ | cospϕq|m “ cosmpϕq.

If the complex number ξ is defined such that (j is the imaginary unit)

ξ “ cospϕq cospλq ` j cospϕq sinpλq “
x

r
` j

y

r
“ s ` jt (44)

it is possible to write
ξm “ cosmpϕqejmλ “ ps ` jtqm (45)

The following sequences may be defined

Rmrs, ts “ Retξmu (46)

Imrs, ts “ Imtξmu (47)

Putting all together, it is possible to write

Upr̄q “
µ

r

8
ÿ

l“0

l
ÿ

m“0

ˆ

Rref

r

˙l

Al,mrustCl,mRmrs, ts ` Sl,mImrs, tsu (48)

In order to normalize the coefficients (C̄l,m and S̄l,m) and the derived Legendre functions (Āl,m “

Nl,mAl,m), each term is divided an multiplied by the normalization factor Nl,m. Then

Upr̄q “
µ

r

8
ÿ

l“0

l
ÿ

m“0

ˆ

Rref

r

˙l

Āl,mrustC̄l,mRmrs, ts ` S̄l,mImrs, tsu (49)
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The sets Dl,mrs, ts, El,mrs, ts, and Fl,mrs, ts, are defined as

Dl,mrs, ts “ C̄l,mRmrs, ts ` S̄l,mImrs, ts (50)

El,mrs, ts “ C̄l,mRm´1rs, ts ` S̄l,mIm´1rs, ts (51)

Fl,mrs, ts “ S̄l,mRm´1rs, ts ´ C̄l,mIm´1rs, ts (52)

The value ρlrrs is also defined as

ρlrrs “
µ

r

ˆ

Rref

r

˙l

(53)

The gravity potential may be finally computed as

Upr̄q “

8
ÿ

l“0

l
ÿ

m“0

ρlrrsĀl,mrusDl,mrs, ts (54)

This is the final expression that will be used to compute the gravity potential.

1.2.2 Recursion Formulas

Several recursion formulas are needed in order to algorithmically implement the Pines’ formulation. They
will be given without proof, but they are easily derived using the definitions above.

• Recursion formula for ρlrrs

Initial condition: ρ0rrs “
µ
r

ρlrrs “ ρ ¨ ρl´1rrs (55)

where ρ “ Rref{r.

• Recursion formula for Rmrs, ts

Initial condition: R0rs, ts “ 1

Rmrs, ts “ sRm´1rs, ts ´ tIm´1rs, ts (56)

• Recursion formula for Imrs, ts

Initial condition: I0rs, ts “ 0

Imrs, ts “ sIm´1rs, ts ` tRm´1rs, ts (57)

• Recursion formula for Āl,mrus

From Equation (43), it is possible to see that

Al,lrus “ p2l ´ 1qAl´1,l´1rus (58)

Al,l´1rus “ uAl,lrus (59)

There are several recursion formulas for computing Legendre polynomials Al,mrus, for m ă l ´ 1. The
following formula, which is stable for high degrees,1 will be used:

Al,mrus “
1

l ´ m
pp2l ´ 1quAl´1,mrus ´ pl ` m ´ 1qAl´2,mrusq (60)

Using Equations (58), (59), and (60), and the definition Āl,mrus “ Nl,mAl,mrus, the following
recursion formulas can be derived.
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Initial condition: Ā0,0rus “ 1
The diagonal terms are computed as

Āl,lrus “

d

p2l ´ 1qp2 ´ δlq

p2lqp2 ´ δl´1q
Āl´1,l´1rus (61)

The low diagonal terms are then calculated as

Āl,l´1rus “ u

d

p2lqp2 ´ δl´1q

2 ´ δl
Āl,lrus (62)

Finally, for l ě pm ` 2q, N1l,m and N2l,m are defined such that

N1l,m “

d

p2l ` 1qp2l ´ 1q

pl ´ mqpl ` mq
(63)

N2l,m “

d

pl ` m ´ 1qp2l ` 1qpl ´ m ´ 1q

pl ´ mqpl ` mqp2l ´ 3q
(64)

and Āl,mrus computed using

Āl,mrus “ uN1l,mĀl´1,mrus ´ N2l,mĀl´2,mrus (65)

1.2.3 Derivatives

The first order derivatives of many of the values given are necessary to compute the gravity field (second
order derivatives are needed if the Hessian is to be computed).

It is easy to show that

BDl,m

Bs
rs, ts “ mEl,mrs, ts (66)

BDl,m

Bt
rs, ts “ mFl,mrs, ts (67)

dρl
dr

rrs “ ´
pl ` 1q

Rref
ρl`1rrs (68)

BRm

Bs
rs, ts “ mRm´1rs, ts (69)

BRm

Bt
rs, ts “ ´mIm´1rs, ts (70)

BIm
Bs

rs, ts “ mIm´1rs, ts (71)

BIm
Bt

rs, ts “ mRm´1rs, ts (72)

dĀl,m

du
rus “

Nl,m

Nl,m`1
Āl,m`1rus (73)

The gravity field can be computed using all the equations given. However, the gradient of the
potential is needed. As a change of variables was realized, the chain rule must be applied. In order
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to avoid filling up pages with math derivations, the results will be given. With patience, the following
results can be obtained applying the chain rule and using all the derivatives given.

The gravity field can be computed as

ḡ “ pa1rr, s, t, us ` s ¨a4rr, s, t, usq̂i` pa2rr, s, t, us ` t ¨a4rr, s, t, usq̂j` pa3rr, s, t, us `u ¨a4rr, s, t, usqk̂
(74)

where

a1rr, s, t, us “

8
ÿ

l“0

l
ÿ

m“0

ρl`1rrs

Rref
mĀl,mrusEl,mrs, ts (75)

a2rr, s, t, us “

8
ÿ

l“0

l
ÿ

m“0

ρl`1rrs

Rref
mĀl,mrusFl,mrs, ts (76)

a3rr, s, t, us “

8
ÿ

l“0

l
ÿ

m“0

ρl`1rrs

Rref
m

Nl,m

Nl,m`1
Āl,m`1rusDl,mrs, ts (77)

a4rr, s, t, us “

8
ÿ

l“0

l
ÿ

m“0

ρl`1rrs

Rref
m

Nl,m

Nl`1,m`1
Āl`1,m`1rusDl,mrs, ts (78)

In order to avoid computing factorials, it is easy to see that

Nl,m

Nl,m`1
“

d

pl ´ mqp2 ´ δmqpl ` m ` 1q

2 ´ δm`1
(79)

Nl,m

Nl`1,m`1
“

d

pl ` m ` 2qpl ` m ` 1qp2l ` 1qp2 ´ δmq

p2l ` 3qp2 ´ δm`1q
(80)

Using all these expressions, the potential and the gravity field can be computed.

1.3 Polyhedral gravity model

The polyhedral model, described in Werner and Scheeres publication6 , computes the exterior gravity
of a polyhedron with constant density σ. Let recall that a polyhedron is geometrically described by a
number of planar faces composed by vertexes. An edge e is the line connecting two adjacent vertexes
belonging to the same face f (the edges follow a counterclockwise concatenation). The potential of
such object is

Upr̄q “ ´
1

2
Gσ

ÿ

fPfaces

¨

˝rf ¨ nfnf ¨ rfωf ´
ÿ

ePface’s edges

rf ¨ nfne ¨ reLe

˛

‚ (81)

The vector rf extends from the evaluation point to any vertex on the face. The variable nf is the
outward-pointing normal vector of face f . The term ωf is the signed solid angle subtended by the face
f when viewed from the evalution point. The variable re is a vector from the evaluation point to the
initial vertex of edge e. The vector ne is the normal of the edge lying on the face plane. The term Le

corresponds to the potential of a 1D wire.
Note that in Werner and Scheeres,6 the double summation term of (81) was simplified to a single

summation over all polyhedron’s edges. Although that reduction is convenient for mathematical com-
pactness, retaining the double summation simplifies the algorithmic implementation (so that there is no
need to check for common edges between adjacent faces).



Doc. ID: Basilisk-GravityEffector Page 11 of 16

In order to provide consistency with other gravity models, the density σ is computed based on the
polyhedron shape and the input gravity parameter µ. The volume of a trisurface polyhedron is

V “
1

6

ÿ

fPfaces

|prf1 ˆ rf2q ¨ rf3 |, (82)

then σ “ µ{pV Gq. The vector rfi , i “ 1, 2, 3, is the position of each face’s vertex.

1.4 Point Mass Gravity

The point mass gravity model is equivalent to using only the 0th term of the spherical harmonics
equations. This is the equation that is used in basics physics courses and is most often used in Basilisk
simulations. It assumes the gravitational body to be a point mass:

Upr̄q “ G
mQ

ρQ
(83)

2 Model Functions
The mathematical description of gravity effects are implemented in gravityEffector.cpp. This code
performs the following primary functions

• GravBody Creation: The code creates gravity bodies which are capable of affecting spacecraft.
It does not effect a spacecraft unless that spacecraft explicitly adds the body as a gravity effector.

• Orbital Energy: The code can calculate the total orbital energy as well as orbital kinetic and
orbital potential energy of a spacecraft about a gravity body.

• Compute gravity: The code can use different gravity models to compute the gravity of a body.
The following models are implemented in Basilisk:

– Simple Gravity: The code can compute a gravity acceleration between two bodies according
to Newton’s law of universal gravitation given µ and the distance between the bodies.

– Spherical Harmonics: The code can compute gravity acceleration between two bodies using
the more-complex method of spherical harmonics. To do this, it must be provided with the
same inputs as for calculating simple gravity. In addition, it needs to be provided a ”degree”
of spherical harmonics to be used and spherical harmonics coefficients useful up to that
degree.

– Polyhedral: The code can compute gravity acceleration between two bodies using the
polyhedral model. To do this, it must be provided with the same inputs as for calculating
simple gravity. In addition, it needs to be provided with the vertexes positions and their
assignment to faces.

• Multiple Body Effects: The code can stack the effects of multiple gravity bodies on top of each
other to determine the net effect on a spacecraft. The user must indicate in the spacecraft set-up
which gravitational bodies should be taken into account.

• Interface: Spacecraft States: The code sends and receives spacecraft state information via the
DynParamManager.

• Interface: Energy Contributions: The code sends spacecraft energy contributions via
updateEnergyContributions() which is called by the spacecraft.

• Interface: GravBody States: The code outputs GravBody states(ephemeris information) via
the Basilisk messaging system.
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3 Model Assumptions and Limitations

3.1 Spherical harmonics gravity model

The limitations of spherical harmonics gravity model are well-known and clearly explained in Schaub
and Junkins’ book.3 The limitations include:

• Coefficient Accuracy: The coefficients used in the spherical harmonics equations are typically
calculated based on gravitational data gathered by satellites. Therefore, the accuracy of the
model is determined by the accuracy of the satellite instrumentation and precision of the stored
data. Furthermore, for some bodies, there may not be sufficient information available to provide
accurate coefficients or higher-degree coefficients.

• Maximum Degree: The spherical harmonics equation is a series expansion. Therefore, any
implementation must truncate the equation at some point. The truncated portion of the equation
necessarily defines some amount of error in the final calculation. This error is, however, small after
the first handful of terms. Additionally, a larger distance between gravity body and spacecraft
requires fewer terms of the series to achieve equal accuracy as compared to a case with less
distance. This code allows the user to request a maximum number of terms to evaluate rather
than a specific accuracy. This could lead to less-than-desirable accuracy with small separation
distances and greater-than-necessary run times with large separation distances.

• Planetary Ephemeris Data: This code generally relies on an external package for planetary
ephemeris information. Errors included in this package will translate into error in the gravity
calculations, but those errors should be small. Because the ephemeris data is tabulated, this code
should not be used to try to project the orbits of the celestial bodies in question. This could be
done, though, by treating any celestial body as a ”spacecraft”.

3.2 Polyhedral gravity model

The limitations of polyhedral gravity model are well-known and clearly explained in Werner and Scheere’s
article.6 The limitations include:

• Constant Density: The polyhedron gravity computation assumes that the body has constant
density. Consequently, this method does not account for spatial density variations that typically
arise within the internal structure of bodies or in contact binary asteroids.

• Shape Accuracy: The polyhedral model assumes the body shape is described as a polyhedron
which is an approximation of the continuous real shape. The resolution of the model can be
augmented by increasing the number of vertexes and faces though, in turn, this may considerably
slow down the gravity evaluation times. Let recall that the polyhedron gravity computation
requires to loop over all faces and edges.

• Trisurface Polyhedron: The implemented computation is case-specific for polyhedrons with
faces composed of three vertexes. This reduces the possible polyhedrons to a single geometrical
topology. However, the trisurface polyhedron is the standardized shape for small bodies.

4 Test Description and Success Criteria
The unit test, test gravityDynEffector.py, validates the internal aspects of the Basilisk spherical har-
monics gravity effector module by comparing module output to expected output. It utilizes spherical
harmonics for calulcations given the gravitation parameter for the massive body, a reference radius, and
the maximum degree of spherical harmonics to be used. The unit test verifies basic set-up, single-body
gravitational acceleration, and multi-body gravitational acceleration.
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4.1 Model Set-Up Verification

This test verifies, via three checks, that the model is appropriately initialized when called.

• 1.1 The first check verifies that the normalized coefficient matrix for the spherical harmonics cal-
culations is initialized appropriately as a 3 ˆ 3 identity matrix.

• 1.2 The second check verifies that the magnitude of the gravity being calculated is reasonable(i.e.
between 9.7 and 9.9 m{s2).

• 1.3 The final check ensures that an error is thrown when users request computing gravity using a
degree higher than the available degree.

4.2 Independent Spherical Harmonics Check

This test compares the Basilisk gravity module spherical harmonics acceleration output to an indepen-
dently formulated python solution. Gravity is measured at an arbitrary point. Note that the independent
solution has singularities at the poles that lead to minor divergences in total acceleration.

4.3 Single-Body Gravity Calculations

This test compares calculated gravity values around the Earth with ephemeris data from the Hubble
telescope. The simulation begins shortly after 0200 UTC May 1, 2012 and carries on for two hours,
evaluating the gravitational acceleration at two second intervals.

4.4 Multi-Body Gravity Calculations

This test checks whether gravity from multiple sources is correctly stacked when applied to a spacecraft.
First, a planet is placed in space near a spacecraft. Second, a planet with half the mass of the first is
placed the same distance from the spacecraft but in the opposite direction. The gravitational acceleration
along that axis is seen to be cut in half for the spacecraft. Finally, a third planet identical to the second
is added coincident with the second and the net gravitational acceleration on the spacecraft is seen to
be zero.

5 Test Parameters
This section summarizes the specific error tolerances for each test. Error tolerances are determined
based on whether the test results comparison should be exact or approximate due to integration or
other reasons. Error tolerances for each test are summarized in table 2.

Table 2: Error tolerance for each test. Note that relative tolerance = truth´result
truth

Test Tolerance
Setup Test 1.0e-01 (Absolute)

Independent Spherical Harmonics Check 1.0e-12 (Relative)
Single-Body Gravity 1.0e-04 (Relative)
Multi-Body Gravity 1.0e-12 (Relative for first check, absolute for second)

The Setup Test has a large tolerance, which is acceptable because it is not trying to test exact values
but only reasonableness. The Independent Spherical Harmonics check has tight tolerances because the
results should be nearly identical for two different formulations of the same mathematics. Single Body
Gravity also has relatively large tolerances because it is just trying to roughly match experimental data,
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but not all real effects are included in the model. Finally, the Multi-Body Gravity test has tight tolerances
because it is set up in such a way that the results should be exact down to machine precision.

6 Test Results
All checks within test gravityDynEffector.py passed as expected. Table 3 shows the test results.

Table 3: Test results.

Test Pass/Fail Notes
Setup Test PASSED

Independent Spherical Harmonics Check PASSED
Single-Body Gravity PASSED
Multi-Body Gravity PASSED

7 User Guide
This section contains descriptions of how the gravity effector code works and includes descriptions of
and notes on variables. It should be helpful to users who wish to use the gravity effector module.

7.1 Using Central Bodies and Relative Dynamics

7.1.1 Using Central Bodies

In simulations with multiple planetary bodies, using dynamics relative to a central body can improve
accuracy. Generally, this is the right thing to do rather than using an absolute coordinate set. If a user has
a gravBody called earth, the central body flag should be set to True. earth.isCentralBody = True

The dynamics will then take care of themselves, but the user needs to be careful to input initial position
and velocity values as relative to the central body. This can be input from a set of Keplerian orbital
elements using orbitalMotion.elem2rv as in
Basilisk/tests/scenarios/scenarioBasicOrbit.py.

The user should be aware that if spacecraft position and velocity are read back from a message
log or plotted that the absolute position and velocity will be returned. It will take additional work to
convert the outputs back to a relative form by subtracting out the central body positions and velocities.
No rotation will be needed, though. It is critical that the relative position and velocities are given in
a frame which is linearly translated but not rotated from the simulation inertial frame. There is no
handling of rotated relative frames within the dynamics. The orbital element to position and velocity
conversion in the section below can be used for relative dynamics inputs, as well.

7.1.2 Not Using Central Bodies

If no planets are designated as central bodies, an absolute initial position and velocity must be given.
Again, orbitalMotion.elem2rv can be used if the orbital elements are given in a frame not rotated
from the simulation inertial frame. However, now, the initial position and velocity of the central body
must be accounted for. These can be retrieved from spice via the planetStates utility:

oe = om.ClassicElements()

oe.a = orbit_a * 1000 #m, orbit semi-major axis

oe.e = orbit_e #eccentricity

oe.i = radians(orbit_i) #inclination, radians.

oe.Omega = radians(orbit_O) # orbit RAA, radians

oe.omega = radians(orbit_o) #orbit argument of periapsis, radians

oe.f = radians(orbit_f) # orbit true anomaly, radians
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r_sc_E, v_sc_E = om.elem2rv(muEarth, oe) #get xyz coordinates from keplerian elements

ephemerides = spice_interface.SpiceInterface()

ephemerides.ModelTag = "SpiceInterfaceData"

ephemerides.SPICEDataPath = splitPath[0] + ’../supportData/EphemerisData/’

ephemerides.outputBufferCount = 2

ephemerides.planetNames = spice_interface.StringVector(["earth", "sun"])

ephemerides.UTCCalInit = simStart #pick a UTC string

earthPos_N, earthVel_N = planetStates.planetPositionVelocity(’EARTH’, simStart)

r_sc_N = array(r_sc_E).flatten() + array(earthPos_N).flatten()

v_sc_N = array(v_sc_E).flatten() + array(earthVel_N).flatten()

scObject.hub.r_CN_NInit = array(r_sc_N)

scObject.hub.v_CN_NInit = array(v_sc_N)

Of course, if a user has initial positions and velocities directly, those should be used. See scenario-
CentralBody.py for a working example.

7.1.3 Reference Frames

An understanding of spice reference frames will help to explain the code above. The spice inertial frame
is the ICRF. The ICRF is coplaner with the Earth’s equator. Generally, the Earth Centered Inertial
system one would give Keplerian elements in is aligned with ICRF. ICRF is referred to within spice
as ”j2000” for legacy reasons and because the J2000 system is only rotated from the ICRF by a few
milliarcseconds.

7.2 Loading polyhedral shape files

The user has to load polyhedral files in a similar way as spherical harmonics ones. The following code,
that loads a polyhedral shape from the file ’EROS856Vert1708Fac.txt’, is shown as an example:

mu = 4.46275472004*1e5

gravFactory = simIncludeGravBody.gravBodyFactory()

polyBody = gravFactory.createCustomGravObject(’eros’, mu=mu)

polyBody.usePolyhedralGravityModel(’EROS856Vert1708Fac.txt’)

7.2.1 Supported polyhedral shape files

The current supported polyhedral shapes files have extensions as ’.obj’, ’.tab’ and ’.txt’. These describe
polyhedral shape models with triangular faces (three vertexes per face). Generally speaking, these files
contain the polyhedral vertexes coordinates followed by the composition of each face (in other words,
the vertexes that compose a face). It is expected that the vertexes coordinates are stated in kilometers
(km). Then, the file reader function loadPolyFromFile does the neccesary conversions to meters (m).
The vertexes positions are assumed in a body-centered body-fixed reference frame, thus the z coordinate
is aligned with the body rotation axis. The expected format of each one of the supported files is detailed
below (for a polyhedral shape of 32002 vertexes and 64000 faces).

The ’.obj’ file has to follow this format:
v -0.477031 0.084442 232.978500

...
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v -1.560627 -1.586087 -225.401962

f 10 9 1

...

f 32002 31996 32000

The ’.tab’ file has to follow this format:
1 -0.477031 0.084442 232.978500

...

32002 -1.560627 -1.586087 -225.401962

1 10 9 1

...

64000 32002 31996 32000

The ’.txt’ file has to follow this format:
32002 64000

-0.477031 0.084442 232.978500

...

-1.560627 -1.586087 -225.401962

10 9 1

...

32002 31996 32000
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