
Bas i l i s k

Autonomous Vehicle Simulation (AVS) Laboratory,
University of Colorado

Basilisk Technical Memorandum
Document ID: Basilisk-horizonOpNav

LIMB-BASED OPTICAL NAVIGATION MODULE

Prepared by T. Teil

Status: Draft

Scope/Contents

Converter that takes circle information from image processing and turns it into a inertial position. This
module also maps the uncertainty from center and apparent diameter into a position uncertainty.

Rev Change Description By Date

1.0 Initial Release T. Teil 2019-05-27

Doc. ID: Basilisk-horizonOpNav Page 1 of 3

Contents

1 Model Description 1
1.1 Input and Output . 1
1.2 Position computation . 2

2 Module Functions 2

3 Module Assumptions and Limitations 2

4 Test Description and Success Criteria 2

5 Test Parameters 2

6 Test Results 3

7 User Guide 3

Fig. 1: Camera Model

1 Model Description

1.1 Input and Output

This converter module processes the output of a limb finding method to extract spacecraft inertial
position. It does this by reading spacecraft attitude (coming from star tracker or other means), camera
parameters, and the limb data.

Messages read:

• CameraConfigMsgPayload: containing focal length, resolution, and sensor size. These values are
needed for the following computations. Notably the camera frame relative to the body frame is
used.

• LimbInMsgPayload: Limb points, and uncertainty around these values in pixels.

Doc. ID: Basilisk-horizonOpNav Page 2 of 3

• NavAttMsgPayload: Used for the spacecraft attitude. This allows to move from the body frame
to the inertial frame.

Message written:

• OpNavMsgPayload: Message containing Nr and it’s covariance.

1.2 Position computation

The details of the algorithm are summarized in the papers attached. The engineering note contains
a summary of the algorithms and covariance analysis. The journal paper? contains the details of the
development and assumptions.

The component that is chosen in the implementation is the way to solve the least squares for equation

rHsx “ 1

This is done in this module by performing a QR-decomposition via a a Gram-Schmidt process. This
leads to the following equation:

rRsx “ rQsT1

Since rRs is upper-triangular, this is solved with an implemented back-substitution.

2 Module Functions
• Update: The state computation described in the references is all done in the update method for

the module.

• QRDecomp: A QR decomposition is developed in order

• BackSub: A Back-Substitution method is implemented

3 Module Assumptions and Limitations
The main assumptions used in this module are :

• Light-time is not modeled

• The uncertainty is mapped using a first variation method, higher order terms are not taken into
account

4 Test Description and Success Criteria
• The first test runs the QR-decomposition and the back-substitution

• The second test for this converter modules creates all three input messages. Using the same
values added in those messages, it mirrors the code to output the position and covariance of the
spacecraft.

5 Test Parameters
The unit test verify that the module output message states match expected values.

Doc. ID: Basilisk-horizonOpNav Page 3 of 3

Table 2: Error tolerance for first test.

Output Value Tested Tolerated Error
QR 1.0E-10

BackSub 1.0E-10

Table 3: Error tolerance for second test.

Output Value Tested Tolerated Error
r N 0.001

covar N 1e-05

6 Test Results
The unit test is expected to pass.

Table 4: Test results

Check Pass/Fail
1 PASSED
2 PASSED

7 User Guide
If the modules outputting the messages needed are in place, the message names just need to be matched.
If not, the module content looks like the following:

• Create the input messages:
inputCamera = messaging.CameraConfigMsgPayload()

inputLimb = messaging.OpNavLimbMsgPayload()

inputAtt = messaging2.NavAttMsgPayload()

• Set camera:
inputCamera.focalLength = 1.

inputCamera.sensorSize = [10, 10]

inputCamera.resolution = [512, 512]

inputCamera.sigma BC = [1.,0.,0.]

• Set Limb:
inputLimb.limbPoints = [226., 113., 227., 113., 223., 114., 224., 114., 225.,

114., 219., 115.]

inputLimb.valid = 1

inputLimb.numLimbPoints=6

inputLimb.timeTag = 12345

• Set attitude:
inputAtt.sigma BN = [0., 1., 0.]

• Set module for Mars:
pixelLine.planetTarget = 2

	Model Description
	Input and Output
	Position computation

	Module Functions
	Module Assumptions and Limitations
	Test Description and Success Criteria
	Test Parameters
	Test Results
	User Guide

