# ISC License
#
# Copyright (c) 2016, Autonomous Vehicle Systems Lab, University of Colorado at Boulder
#
# Permission to use, copy, modify, and/or distribute this software for any
# purpose with or without fee is hereby granted, provided that the above
# copyright notice and this permission notice appear in all copies.
#
# THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
# WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
# MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
# ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
# WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
# ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
# OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
import math
# Import required modules:
import numpy as np
from numpy import linalg as la
M_PI = np.pi
D2R = M_PI / 180.
R2D = 180. / M_PI
[docs]
def Picheck(x):
"""
Picheck(x)
Makes sure that the angle x lies within +/- Pi.
"""
if x > M_PI:
return x - 2 * M_PI
if x < -M_PI:
return x + 2 * M_PI
return x
[docs]
def C2EP(C):
"""
C2EP
Q = C2EP(C) translates the 3x3 direction cosine matrix
C into the corresponding 4x1 euler parameter vector Q,
where the first component of Q is the non-dimensional
Euler parameter Beta_0 >= 0. Transformation is done
using the Stanley method.
"""
tr = np.trace(C)
b2 = np.array([(1 + tr) / 4,
(1 + 2 * C[0, 0] - tr) / 4,
(1 + 2 * C[1, 1] - tr) / 4,
(1 + 2 * C[2, 2] - tr) / 4
])
case = np.argmax(b2)
b = b2
if case == 0:
b[0] = np.sqrt(b2[0])
b[1] = (C[1, 2] - C[2, 1]) / 4 / b[0]
b[2] = (C[2, 0] - C[0, 2]) / 4 / b[0]
b[3] = (C[0, 1] - C[1, 0]) / 4 / b[0]
elif case == 1:
b[1] = np.sqrt(b2[1])
b[0] = (C[1, 2] - C[2, 1]) / 4 / b[1]
if b[0] < 0:
b[1] = -b[1]
b[0] = -b[0]
b[2] = (C[0, 1] + C[1, 0]) / 4 / b[1]
b[3] = (C[2, 0] + C[0, 2]) / 4 / b[1]
elif case == 2:
b[2] = np.sqrt(b2[2])
b[0] = (C[2, 0] - C[0, 2]) / 4 / b[2]
if b[0] < 0:
b[2] = -b[2]
b[0] = -b[0]
b[1] = (C[0, 1] + C[1, 0]) / 4 / b[2]
b[3] = (C[1, 2] + C[2, 1]) / 4 / b[2]
elif case == 3:
b[3] = np.sqrt(b2[3])
b[0] = (C[0, 1] - C[1, 0]) / 4 / b[3]
if b[0] < 0:
b[3] = -b[3]
b[0] = -b[0]
b[1] = (C[2, 0] + C[0, 2]) / 4 / b[3]
b[2] = (C[1, 2] + C[2, 1]) / 4 / b[3]
return b
[docs]
def C2Euler121(C):
"""
C2Euler121
Q = C2Euler121(C) translates the 3x3 direction cosine matrix
C into the corresponding (1-2-1) euler angle set.
"""
q0 = math.atan2(C[0, 1], -C[0, 2])
q1 = math.acos(C[0, 0])
q2 = math.atan2(C[1, 0], C[2, 0])
q = np.array([q0, q1, q2])
return q
[docs]
def C2Euler123(C):
"""
C2Euler123
Q = C2Euler123(C) translates the 3x3 direction cosine matrix
C into the corresponding (1-2-3) euler angle set.
"""
q0 = np.arctan2(-C[2, 1], C[2, 2])
q1 = np.arcsin(C[2, 0])
q2 = np.arctan2(-C[1, 0], C[0, 0])
q = np.array([q0, q1, q2])
return q
[docs]
def C2Euler131(C):
"""
C2Euler131
Q = C2Euler131(C) translates the 3x3 direction cosine matrix
C into the corresponding (1-3-1) euler angle set.
"""
q0 = math.atan2(C[0, 2], C[0, 1])
q1 = math.acos(C[0, 0])
q2 = math.atan2(C[2, 0], -C[1, 0])
q = np.array([q0, q1, q2])
return q
[docs]
def C2Euler132(C):
"""
C2Euler132
Q = C2Euler132(C) translates the 3x3 direction cosine matrix
C into the corresponding (1-3-2) euler angle set.
"""
q0 = math.atan2(C[1, 2], C[1, 1])
q1 = math.asin(-C[1, 0])
q2 = math.atan2(C[2, 0], C[0, 0])
q = np.array([q0, q1, q2])
return q
[docs]
def C2Euler212(C):
"""
C2Euler212
Q = C2Euler212(C) translates the 3x3 direction cosine matrix
C into the corresponding (2-1-2) euler angle set.
"""
q0 = math.atan2(C[1, 0], C[1, 2])
q1 = math.acos(C[1, 1])
q2 = math.atan2(C[0, 1], -C[2, 1])
q = np.array([q0, q1, q2])
return q
[docs]
def C2Euler213(C):
"""
C2Euler213
Q = C2Euler213(C) translates the 3x3 direction cosine matrix
C into the corresponding (2-1-3) euler angle set.
"""
q0 = math.atan2(C[2, 0], C[2, 2])
q1 = math.asin(-C[2, 1])
q2 = math.atan2(C[0, 1], C[1, 1])
q = np.array([q0, q1, q2])
return q
[docs]
def C2Euler231(C):
"""
C2Euler231
Q = C2Euler231(C) translates the 3x3 direction cosine matrix
C into the corresponding (2-3-1) euler angle set.
"""
q0 = math.atan2(-C[0, 2], C[0, 0])
q1 = math.asin(C[0, 1])
q2 = math.atan2(-C[2, 1], C[1, 1])
q = np.array([q0, q1, q2])
return q
[docs]
def C2Euler232(C):
"""
C2Euler232
Q = C2Euler232(C) translates the 3x3 direction cosine matrix
C into the corresponding (2-3-2) euler angle set.
"""
q0 = math.atan2(C[1, 2], -C[1, 0])
q1 = math.acos(C[1, 1])
q2 = math.atan2(C[2, 1], C[0, 1])
q = np.array([q0, q1, q2])
return q
[docs]
def C2Euler312(C):
"""
C2Euler312
Q = C2Euler312(C) translates the 3x3 direction cosine matrix
C into the corresponding (3-1-2) euler angle set.
"""
q0 = math.atan2(-C[1, 0], C[1, 1])
q1 = math.asin(C[1, 2])
q2 = math.atan2(-C[0, 2], C[2, 2])
q = np.array([q0, q1, q2])
return q
[docs]
def C2Euler313(C):
"""
C2Euler313
Q = C2Euler313(C) translates the 3x3 direction cosine matrix
C into the corresponding (3-1-3) euler angle set.
"""
q0 = math.atan2(C[2, 0], -C[2, 1])
q1 = math.acos(C[2, 2])
q2 = math.atan2(C[0, 2], C[1, 2])
q = np.array([q0, q1, q2])
return q
[docs]
def C2Euler321(C):
"""
C2Euler321
Q = C2Euler321(C) translates the 3x3 direction cosine matrix
C into the corresponding (3-2-1) euler angle set.
"""
q0 = math.atan2(C[0, 1], C[0, 0])
q1 = math.asin(-C[0, 2])
q2 = math.atan2(C[1, 2], C[2, 2])
q = np.array([q0, q1, q2])
return q
[docs]
def C2Euler323(C):
"""
C2Euler323
Q = C2Euler323(C) translates the 3x3 direction cosine matrix
C into the corresponding (3-2-3) euler angle set.
"""
q0 = math.atan2(C[2, 1], C[2, 0])
q1 = math.acos(C[2, 2])
q2 = math.atan2(C[1, 2], -C[0, 2])
q = np.array([q0, q1, q2])
return q
[docs]
def C2Gibbs(C):
"""
C2Gibbs
Q = C2Gibbs(C) translates the 3x3 direction cosine matrix
C into the corresponding 3x1 gibbs vector Q.
"""
b = C2EP(C)
q0 = b[1] / b[0]
q1 = b[2] / b[0]
q2 = b[3] / b[0]
q = np.array([q0, q1, q2])
return q
[docs]
def C2MRP(C):
"""
C2MRP
Q = C2MRP(C) translates the 3x3 direction cosine matrix
C into the corresponding 3x1 MRP vector Q where the
MRP vector is chosen such that :math:`|Q| <= 1`.
"""
b = C2EP(C)
q = np.array([
b[1] / (1 + b[0]),
b[2] / (1 + b[0]),
b[3] / (1 + b[0])
])
return q
[docs]
def C2PRV(C):
"""
C2PRV
Q = C2PRV(C) translates the 3x3 direction cosine matrix
C into the corresponding 3x1 principal rotation vector Q,
where the first component of Q is the principal rotation angle
phi (0<= phi <= Pi)
"""
cp = (np.trace(C) - 1) / 2
p = np.arccos(cp)
sp = p / 2. / np.sin(p)
q = np.array([
(C[1, 2] - C[2, 1]) * sp,
(C[2, 0] - C[0, 2]) * sp,
(C[0, 1] - C[1, 0]) * sp
])
return q
[docs]
def addEP(b1, b2):
"""
addEP(B1,B2)
Q = addEP(B1,B2) provides the euler parameter vector
which corresponds to performing to successive
rotations B1 and B2.
"""
q0 = b2[0] * b1[0] - b2[1] * b1[1] - b2[2] * b1[2] - b2[3] * b1[3]
q1 = b2[1] * b1[0] + b2[0] * b1[1] + b2[3] * b1[2] - b2[2] * b1[3]
q2 = b2[2] * b1[0] - b2[3] * b1[1] + b2[0] * b1[2] + b2[1] * b1[3]
q3 = b2[3] * b1[0] + b2[2] * b1[1] - b2[1] * b1[2] + b2[0] * b1[3]
q = np.array([q0, q1, q2, q3])
return q
[docs]
def addEuler121(e1, e2):
"""
addEuler121(E1,E2)
Q = addEuler121(E1,E2) computes the overall (1-2-1) euler
angle vector corresponding to two successive
(1-2-1) rotations E1 and E2.
"""
cp1 = math.cos(e1[1])
cp2 = math.cos(e2[1])
sp1 = math.sin(e1[1])
sp2 = math.sin(e2[1])
dum = e1[2] + e2[0]
q1 = math.acos(cp1 * cp2 - sp1 * sp2 * math.cos(dum))
cp3 = math.cos(q1)
q0 = Picheck(e1[0] + math.atan2(sp1 * sp2 * math.sin(dum), cp2 - cp3 * cp1))
q2 = Picheck(e2[2] + math.atan2(sp1 * sp2 * math.sin(dum), cp1 - cp3 * cp2))
q = np.array([q0, q1, q2])
return q
[docs]
def addEuler123(e1, e2):
"""
addEuler123(E1,E2)
Q = addEuler123(E1,E2) computes the overall (1-2-3) euler
angle vector corresponding to two successive
(1-2-3) rotations E1 and E2.
"""
C1 = euler1232C(e1)
C2 = euler1232C(e2)
C = np.dot(C2, C1)
return C2Euler123(C)
[docs]
def addEuler131(e1, e2):
"""
addEuler131(E1,E2)
Q = addEuler131(E1,E2) computes the overall (1-3-1) euler
angle vector corresponding to two successive
(1-3-1) rotations E1 and E2.
"""
cp1 = math.cos(e1[1])
cp2 = math.cos(e2[1])
sp1 = math.sin(e1[1])
sp2 = math.sin(e2[1])
dum = e1[2] + e2[0]
q1 = math.acos(cp1 * cp2 - sp1 * sp2 * math.cos(dum))
cp3 = math.cos(q1)
q0 = Picheck(e1[0] + math.atan2(sp1 * sp2 * math.sin(dum), cp2 - cp3 * cp1))
q2 = Picheck(e2[2] + math.atan2(sp1 * sp2 * math.sin(dum), cp1 - cp3 * cp2))
q = np.array([q0, q1, q2])
return q
[docs]
def addEuler132(e1, e2):
"""
addEuler132(E1,E2)
Q = addEuler132(E1,E2) computes the overall (1-3-2) euler
angle vector corresponding to two successive
(1-3-2) rotations E1 and E2.
"""
C1 = euler1322C(e1)
C2 = euler1322C(e2)
C = np.dot(C2, C1)
return C2Euler132(C)
[docs]
def addEuler212(e1, e2):
"""
addEuler212(E1,E2)
Q = addEuler212(E1,E2) computes the overall (2-1-2) euler
angle vector corresponding to two successive
(2-1-2) rotations E1 and E2.
"""
cp1 = math.cos(e1[1])
cp2 = math.cos(e2[1])
sp1 = math.sin(e1[1])
sp2 = math.sin(e2[1])
dum = e1[2] + e2[0]
q1 = math.acos(cp1 * cp2 - sp1 * sp2 * math.cos(dum))
cp3 = math.cos(q1)
q0 = Picheck(e1[0] + math.atan2(sp1 * sp2 * math.sin(dum), cp2 - cp3 * cp1))
q2 = Picheck(e2[2] + math.atan2(sp1 * sp2 * math.sin(dum), cp1 - cp3 * cp2))
q = np.array([q0, q1, q2])
return q
[docs]
def addEuler213(e1, e2):
"""
addEuler213(E1,E2)
Q = addEuler213(E1,E2) computes the overall (2-1-3) euler
angle vector corresponding to two successive
(2-1-3) rotations E1 and E2.
"""
C1 = euler2132C(e1)
C2 = euler2132C(e2)
C = np.dot(C2, C1)
return C2Euler213(C)
[docs]
def addEuler231(e1, e2):
"""
addEuler231(E1,E2)
Q = addEuler231(E1,E2) computes the overall (2-3-1) euler
angle vector corresponding to two successive
(2-3-1) rotations E1 and E2.
"""
C1 = euler2312C(e1)
C2 = euler2312C(e2)
C = np.dot(C2, C1)
return C2Euler231(C)
[docs]
def addEuler232(e1, e2):
"""
addEuler232(E1,E2)
Q = addEuler232(E1,E2) computes the overall (2-3-2) euler
angle vector corresponding to two successive
(2-3-2) rotations E1 and E2.
"""
cp1 = math.cos(e1[1])
cp2 = math.cos(e2[1])
sp1 = math.sin(e1[1])
sp2 = math.sin(e2[1])
dum = e1[2] + e2[0]
q1 = math.acos(cp1 * cp2 - sp1 * sp2 * math.cos(dum))
cp3 = math.cos(q1)
q0 = Picheck(e1[0] + math.atan2(sp1 * sp2 * math.sin(dum), cp2 - cp3 * cp1))
q2 = Picheck(e2[2] + math.atan2(sp1 * sp2 * math.sin(dum), cp1 - cp3 * cp2))
q = np.array([q0, q1, q2])
return q
[docs]
def addEuler312(e1, e2):
"""
addEuler312(E1,E2)
Q = addEuler312(E1,E2) computes the overall (3-1-2) euler
angle vector corresponding to two successive
(3-1-2) rotations E1 and E2.
"""
C1 = euler3122C(e1)
C2 = euler3122C(e2)
C = np.dot(C2, C1)
return C2Euler312(C)
[docs]
def addEuler313(e1, e2):
"""
addEuler313(E1,E2)
Q = addEuler313(E1,E2) computes the overall (3-1-3) euler
angle vector corresponding to two successive
(3-1-3) rotations E1 and E2.
"""
cp1 = math.cos(e1[1])
cp2 = math.cos(e2[1])
sp1 = math.sin(e1[1])
sp2 = math.sin(e2[1])
dum = e1[2] + e2[0]
q1 = math.acos(cp1 * cp2 - sp1 * sp2 * math.cos(dum))
cp3 = math.cos(q1)
q0 = Picheck(e1[0] + math.atan2(sp1 * sp2 * math.sin(dum), cp2 - cp3 * cp1))
q2 = Picheck(e2[2] + math.atan2(sp1 * sp2 * math.sin(dum), cp1 - cp3 * cp2))
q = np.array([q0, q1, q2])
return q
[docs]
def addEuler321(e1, e2):
"""
addEuler321(E1,E2)
Q = addEuler321(E1,E2) computes the overall (3-2-1) euler
angle vector corresponding to two successive
(3-2-1) rotations E1 and E2.
"""
C1 = euler3212C(e1)
C2 = euler3212C(e2)
C = np.dot(C2, C1)
return C2Euler321(C)
[docs]
def addEuler323(e1, e2):
"""
addEuler323(E1,E2)
Q = addEuler323(E1,E2) computes the overall (3-2-3) euler
angle vector corresponding to two successive
(3-2-3) rotations E1 and E2.
"""
cp1 = math.cos(e1[1])
cp2 = math.cos(e2[1])
sp1 = math.sin(e1[1])
sp2 = math.sin(e2[1])
dum = e1[2] + e2[0]
q1 = math.acos(cp1 * cp2 - sp1 * sp2 * math.cos(dum))
cp3 = math.cos(q1)
q0 = Picheck(e1[0] + math.atan2(sp1 * sp2 * math.sin(dum), cp2 - cp3 * cp1))
q2 = Picheck(e2[2] + math.atan2(sp1 * sp2 * math.sin(dum), cp1 - cp3 * cp2))
q = np.array([q0, q1, q2])
return q
[docs]
def addGibbs(q1, q2):
"""
addGibbs(Q1,Q2)
Q = addGibbs(Q1,Q2) provides the gibbs vector
which corresponds to performing to successive
rotations Q1 and Q2.
"""
result = (q1 + q2 + np.cross(q1, q2)) / (1 - np.dot(q1, q2))
return result
[docs]
def addMRP(q1, q2):
"""
addMRP(Q1,Q2)
Q = addMRP(Q1,Q2) provides the MRP vector
which corresponds to performing to successive
rotations Q1 and Q2.
"""
den = 1 + np.dot(q1, q1) * np.dot(q2, q2) - 2 * np.dot(q1, q2)
if np.abs(den) < 1e-5:
q2 = -q2/np.dot(q2,q2)
den = 1 + np.dot(q1, q1) * np.dot(q2, q2) - 2 * np.dot(q1, q2)
num = (1 - np.dot(q1, q1)) * q2 + (1 - np.dot(q2, q2)) * q1 + 2 * np.cross(q1, q2)
q = num / den
if np.dot(q,q) > 1:
q = - q/np.dot(q,q)
return q
[docs]
def PRV2elem(r):
"""
PRV2elem(R)
Q = PRV2elem(R) translates a prinicpal rotation vector R
into the corresponding principal rotation element set Q.
"""
q0 = np.linalg.norm(r)
if q0 < 1e-12:
return np.zeros(4)
q1 = r[0] / q0
q2 = r[1] / q0
q3 = r[2] / q0
q = np.array([q0, q1, q2, q3])
return q
[docs]
def addPRV(qq1, qq2):
"""
addPRV(Q1,Q2)
Q = addPRV(Q1,Q2) provides the principal rotation vector
which corresponds to performing to successive
prinicipal rotations Q1 and Q2.
"""
q1 = PRV2elem(qq1)
q2 = PRV2elem(qq2)
cp1 = math.cos(q1[0] / 2.)
cp2 = math.cos(q2[0] / 2.)
sp1 = math.sin(q1[0] / 2.)
sp2 = math.sin(q2[0] / 2.)
e1 = q1[1:4]
e2 = q2[1:4]
p = 2. * math.acos(cp1 * cp2 - sp1 * sp2 * np.dot(e1, e2))
sp = math.sin(p / 2.)
e = (cp1 * sp2 * e2 + cp2 * sp1 * e1 + sp1 * sp2 * np.cross(e1, e2))
q = (p / sp) * e
return q
[docs]
def BinvEP(q):
"""
BinvEP(Q)
B = BinvEP(Q) returns the 3x4 matrix which relates
the derivative of euler parameter vector Q to the
body angular velocity vector w.
w = 2 [B(Q)]^(-1) dQ/dt
"""
B = np.zeros([3, 4])
B[0, 0] = -q[1]
B[0, 1] = q[0]
B[0, 2] = q[3]
B[0, 3] = -q[2]
B[1] = -q[2]
B[1, 1] = -q[3]
B[1, 2] = q[0]
B[1, 3] = q[1]
B[2] = -q[3]
B[2, 1] = q[2]
B[2, 2] = -q[1]
B[2, 3] = q[0]
return B
[docs]
def BinvEuler121(q):
"""
BinvEuler121(Q)
B = BinvEuler121(Q) returns the 3x3 matrix which relates
the derivative of the (1-2-1) euler angle vector Q to the
body angular velocity vector w.
w = [B(Q)]^(-1) dQ/dt
"""
s2 = math.sin(q[1])
c2 = math.cos(q[1])
s3 = math.sin(q[2])
c3 = math.cos(q[2])
B = np.zeros([3, 3])
B[0, 0] = c2
B[0, 1] = 0
B[0, 2] = 1
B[1, 0] = s2 * s3
B[1, 1] = c3
B[1, 2] = 0
B[2, 0] = s2 * c3
B[2, 1] = -s3
B[2, 2] = 0
return B
[docs]
def BinvEuler123(q):
"""
BinvEuler123(Q)
B = BinvEuler123(Q) returns the 3x3 matrix which relates
the derivative of the (1-2-3) euler angle vector Q to the
body angular velocity vector w.
w = [B(Q)]^(-1) dQ/dt
"""
s2 = math.sin(q[1])
c2 = math.cos(q[1])
s3 = math.sin(q[2])
c3 = math.cos(q[2])
B = np.zeros([3, 3])
B[0, 0] = c2 * c3
B[0, 1] = s3
B[0, 2] = 0
B[1, 0] = -c2 * s3
B[1, 1] = c3
B[1, 2] = 0
B[2, 0] = s2
B[2, 1] = 0
B[2, 2] = 1
return B
[docs]
def BinvEuler131(q):
"""
BinvEuler131(Q)
B = BinvEuler131(Q) returns the 3x3 matrix which relates
the derivative of the (1-3-1) euler angle vector Q to the
body angular velocity vector w.
w = [B(Q)]^(-1) dQ/dt
"""
s2 = math.sin(q[1])
c2 = math.cos(q[1])
s3 = math.sin(q[2])
c3 = math.cos(q[2])
B = np.zeros([3, 3])
B[0, 0] = c2
B[0, 1] = 0
B[0, 2] = 1
B[1, 0] = -s2 * c3
B[1, 1] = s3
B[1, 2] = 0
B[2, 0] = s2 * s3
B[2, 1] = c3
B[2, 2] = 0
return B
[docs]
def BinvEuler132(q):
"""
BinvEuler132(Q)
B = BinvEuler132(Q) returns the 3x3 matrix which relates
the derivative of the (1-3-2) euler angle vector Q to the
body angular velocity vector w.
w = [B(Q)]^(-1) dQ/dt
"""
s2 = math.sin(q[1])
c2 = math.cos(q[1])
s3 = math.sin(q[2])
c3 = math.cos(q[2])
B = np.zeros([3, 3])
B[0, 0] = c2 * c3
B[0, 1] = -s3
B[0, 2] = 0
B[1, 0] = -s2
B[1, 1] = 0
B[1, 2] = 1
B[2, 0] = c2 * s3
B[2, 1] = c3
B[2, 2] = 0
return B
[docs]
def BinvEuler212(q):
"""
BinvEuler212(Q)
B = BinvEuler212(Q) returns the 3x3 matrix which relates
the derivative of the (2-1-2) euler angle vector Q to the
body angular velocity vector w.
w = [B(Q)]^(-1) dQ/dt
"""
s2 = math.sin(q[1])
c2 = math.cos(q[1])
s3 = math.sin(q[2])
c3 = math.cos(q[2])
B = np.zeros([3, 3])
B[0, 0] = s2 * s3
B[0, 1] = c3
B[0, 2] = 0
B[1, 0] = c2
B[1, 1] = 0
B[1, 2] = 1
B[2, 0] = -s2 * c3
B[2, 1] = s3
B[2, 2] = 0
return B
[docs]
def BinvEuler213(q):
"""
BinvEuler213(Q)
B = BinvEuler213(Q) returns the 3x3 matrix which relates
the derivative of the (2-1-3) euler angle vector Q to the
body angular velocity vector w.
w = [B(Q)]^(-1) dQ/dt
"""
s2 = math.sin(q[1])
c2 = math.cos(q[1])
s3 = math.sin(q[2])
c3 = math.cos(q[2])
B = np.zeros([3, 3])
B[0, 0] = c2 * s3
B[0, 1] = c3
B[0, 2] = 0
B[1, 0] = c2 * c3
B[1, 1] = -s3
B[1, 2] = 0
B[2, 0] = -s2
B[2, 1] = 0
B[2, 2] = 1
return B
[docs]
def BinvEuler231(q):
"""
BinvEuler231(Q)
B = BinvEuler231(Q) returns the 3x3 matrix which relates
the derivative of the (2-3-1) euler angle vector Q to the
body angular velocity vector w.
w = [B(Q)]^(-1) dQ/dt
"""
s2 = math.sin(q[1])
c2 = math.cos(q[1])
s3 = math.sin(q[2])
c3 = math.cos(q[2])
B = np.zeros([3, 3])
B[0, 0] = s2
B[0, 1] = 0
B[0, 2] = 1
B[1, 0] = c2 * c3
B[1, 1] = s3
B[1, 2] = 0
B[2, 0] = -c2 * s3
B[2, 1] = c3
B[2, 2] = 0
return B
[docs]
def BinvEuler232(q):
"""
BinvEuler232(Q)
B = BinvEuler232(Q) returns the 3x3 matrix which relates
the derivative of the (2-3-2) euler angle vector Q to the
body angular velocity vector w.
w = [B(Q)]^(-1) dQ/dt
"""
s2 = math.sin(q[1])
c2 = math.cos(q[1])
s3 = math.sin(q[2])
c3 = math.cos(q[2])
B = np.zeros([3, 3])
B[0, 0] = s2 * c3
B[0, 1] = -s3
B[0, 2] = 0
B[1, 0] = c2
B[1, 1] = 0
B[1, 2] = 1
B[2, 0] = s2 * s3
B[2, 1] = c3
B[2, 2] = 0
return B
[docs]
def BinvEuler312(q):
"""
BinvEuler312(Q)
B = BinvEuler312(Q) returns the 3x3 matrix which relates
the derivative of the (3-1-2) euler angle vector Q to the
body angular velocity vector w.
w = [B(Q)]^(-1) dQ/dt
"""
s2 = math.sin(q[1])
c2 = math.cos(q[1])
s3 = math.sin(q[2])
c3 = math.cos(q[2])
B = np.zeros([3, 3])
B[0, 0] = -c2 * s3
B[0, 1] = c3
B[0, 2] = 0
B[1, 0] = s2
B[1, 1] = 0
B[1, 2] = 1
B[2, 0] = c2 * c3
B[2, 1] = s3
B[2, 2] = 0
return B
[docs]
def BinvEuler313(q):
"""
BinvEuler313(Q)
B = BinvEuler313(Q) returns the 3x3 matrix which relates
the derivative of the (3-1-3) euler angle vector Q to the
body angular velocity vector w.
w = [B(Q)]^(-1) dQ/dt
"""
s2 = math.sin(q[1])
c2 = math.cos(q[1])
s3 = math.sin(q[2])
c3 = math.cos(q[2])
B = np.zeros([3, 3])
B[0, 0] = s2 * s3
B[0, 1] = c3
B[0, 2] = 0
B[1, 0] = s2 * c3
B[1, 1] = -s3
B[1, 2] = 0
B[2, 0] = c2
B[2, 1] = 0
B[2, 2] = 1
return B
[docs]
def BinvEuler321(q):
"""
BinvEuler321(Q)
B = BinvEuler321(Q) returns the 3x3 matrix which relates
the derivative of the (3-2-1) euler angle vector Q to the
body angular velocity vector w.
w = [B(Q)]^(-1) dQ/dt
"""
s2 = math.sin(q[1])
c2 = math.cos(q[1])
s3 = math.sin(q[2])
c3 = math.cos(q[2])
B = np.zeros([3, 3])
B[0, 0] = -s2
B[0, 1] = 0
B[0, 2] = 1
B[1, 0] = c2 * s3
B[1, 1] = c3
B[1, 2] = 0
B[2, 0] = c2 * c3
B[2, 1] = -s3
B[2, 2] = 0
return B
[docs]
def BinvEuler323(q):
"""
BinvEuler323(Q)
B = BinvEuler323(Q) returns the 3x3 matrix which relates
the derivative of the (3-2-3) euler angle vector Q to the
body angular velocity vector w.
w = [B(Q)]^(-1) dQ/dt
"""
s2 = math.sin(q[1])
c2 = math.cos(q[1])
s3 = math.sin(q[2])
c3 = math.cos(q[2])
B = np.zeros([3, 3])
B[0, 0] = -s2 * c3
B[0, 1] = s3
B[0, 2] = 0
B[1, 0] = s2 * s3
B[1, 1] = c3
B[1, 2] = 0
B[2, 0] = c2
B[2, 1] = 0
B[2, 2] = 1
return B
[docs]
def BinvGibbs(q):
"""
BinvGibbs(Q)
B = BinvGibbs(Q) returns the 3x3 matrix which relates
the derivative of gibbs vector Q to the
body angular velocity vector w.
w = 2 [B(Q)]^(-1) dQ/dt
"""
B = np.zeros([3, 3])
B[0, 0] = 1
B[0, 1] = q[2]
B[0, 2] = -q[1]
B[1, 0] = -q[2]
B[1, 1] = 1
B[1, 2] = q[0]
B[2, 0] = q[1]
B[2, 1] = -q[0]
B[2, 2] = 1
B = B / (1 + np.dot(q, q))
return B
[docs]
def BinvMRP(q):
"""
BinvMRP(Q)
B = BinvMRP(Q) returns the 3x3 matrix which relates
the derivative of MRP vector Q to the
body angular velocity vector w.
w = 4 [B(Q)]^(-1) dQ/dt
"""
s2 = np.dot(q, q)
B = np.zeros([3, 3])
B[0, 0] = 1 - s2 + 2 * q[0] * q[0]
B[0, 1] = 2 * (q[0] * q[1] + q[2])
B[0, 2] = 2 * (q[0] * q[2] - q[1])
B[1, 0] = 2 * (q[1] * q[0] - q[2])
B[1, 1] = 1 - s2 + 2 * q[1] * q[1]
B[1, 2] = 2 * (q[1] * q[2] + q[0])
B[2, 0] = 2 * (q[2] * q[0] + q[1])
B[2, 1] = 2 * (q[2] * q[1] - q[0])
B[2, 2] = 1 - s2 + 2 * q[2] * q[2]
B = B / (1 + s2) / (1 + s2)
return B
[docs]
def BinvPRV(q):
"""
BinvPRV(Q)
B = BinvPRV(Q) returns the 3x3 matrix which relates
the derivative of principal rotation vector Q to the
body angular velocity vector w.
w = [B(Q)]^(-1) dQ/dt
"""
p = la.norm(q)
c1 = (1 - math.cos(p)) / p / p
c2 = (p - math.sin(p)) / p / p / p
B = np.zeros([3, 3])
B[0, 0] = 1 - c2 * (q[1] * q[1] + q[2] * q[2])
B[0, 1] = c1 * q[2] + c2 * q[0] * q[1]
B[0, 2] = -c1 * q[1] + c2 * q[0] * q[2]
B[1, 0] = -c1 * q[2] + c2 * q[0] * q[1]
B[1, 1] = 1 - c2 * (q[0] * q[0] + q[2] * q[2])
B[1, 2] = c1 * q[0] + c2 * q[1] * q[2]
B[2, 0] = c1 * q[1] + c2 * q[2] * q[0]
B[2, 1] = -c1 * q[0] + c2 * q[2] * q[1]
B[2, 2] = 1 - c2 * (q[0] * q[0] + q[1] * q[1])
return B
[docs]
def BmatEP(q):
"""
BmatEP(Q)
B = BmatEP(Q) returns the 4x3 matrix which relates the
body angular velocity vector w to the derivative of
Euler parameter vector Q.
dQ/dt = 1/2 [B(Q)] w
"""
B = np.zeros([4, 3])
B[0, 0] = -q[1]
B[0, 1] = -q[2]
B[0, 2] = -q[3]
B[1, 0] = q[0]
B[1, 1] = -q[3]
B[1, 2] = q[2]
B[2, 0] = q[3]
B[2, 1] = q[0]
B[2, 2] = -q[1]
B[3, 0] = -q[2]
B[3, 1] = q[1]
B[3, 2] = q[0]
return B
[docs]
def BmatEuler121(q):
"""
BmatEuler121(Q)
B = BmatEuler121(Q) returns the 3x3 matrix which relates the
body angular velocity vector w to the derivative of
(1-2-1) euler angle vector Q.
dQ/dt = [B(Q)] w
"""
s2 = math.sin(q[1])
c2 = math.cos(q[1])
s3 = math.sin(q[2])
c3 = math.cos(q[2])
B = np.zeros([3, 3])
B[0, 0] = 0
B[0, 1] = s3
B[0, 2] = c3
B[1, 0] = 0
B[1, 1] = s2 * c3
B[1, 2] = -s2 * s3
B[2, 0] = s2
B[2, 1] = -c2 * s3
B[2, 2] = -c2 * c3
B = B / s2
return B
[docs]
def BmatEuler123(q):
"""
BmatEuler123(Q)
B = BmatEuler123(Q) returns the 3x3 matrix which relates the
body angular velocity vector w to the derivative of
(1-2-3) euler angle vector Q.
dQ/dt = [B(Q)] w
"""
s2 = math.sin(q[1])
c2 = math.cos(q[1])
s3 = math.sin(q[2])
c3 = math.cos(q[2])
B = np.zeros([3, 3])
B[0, 0] = c3
B[0, 1] = -s3
B[0, 2] = 0
B[1, 0] = c2 * s3
B[1, 1] = c2 * c3
B[1, 2] = 0
B[2, 0] = -s2 * c3
B[2, 1] = s2 * s3
B[2, 2] = c2
B = B / c2
return B
[docs]
def BmatEuler131(q):
"""
BmatEuler131(Q)
B = BmatEuler131(Q) returns the 3x3 matrix which relates the
body angular velocity vector w to the derivative of
(1-3-1) euler angle vector Q.
dQ/dt = [B(Q)] w
"""
s2 = math.sin(q[1])
c2 = math.cos(q[1])
s3 = math.sin(q[2])
c3 = math.cos(q[2])
B = np.zeros([3, 3])
B[0, 0] = 0
B[0, 1] = -c3
B[0, 2] = s3
B[1, 0] = 0
B[1, 1] = s2 * s3
B[1, 2] = s2 * c3
B[2, 0] = s2
B[2, 1] = c2 * c3
B[2, 2] = -c2 * s3
B = B / s2
return B
[docs]
def BmatEuler132(q):
"""
BmatEuler132(Q)
B = BmatEuler132(Q) returns the 3x3 matrix which relates the
body angular velocity vector w to the derivative of
(1-3-2) euler angle vector Q.
dQ/dt = [B(Q)] w
"""
s2 = math.sin(q[1])
c2 = math.cos(q[1])
s3 = math.sin(q[2])
c3 = math.cos(q[2])
B = np.zeros([3, 3])
B[0, 0] = c3
B[0, 1] = 0
B[0, 2] = s3
B[1, 0] = -c2 * s3
B[1, 1] = 0
B[1, 2] = c2 * c3
B[2, 0] = s2 * c3
B[2, 1] = c2
B[2, 2] = s2 * s3
B = B / c2
return B
[docs]
def BmatEuler212(q):
"""
BmatEuler212(Q)
B = BmatEuler212(Q) returns the 3x3 matrix which relates the
body angular velocity vector w to the derivative of
(2-1-2) euler angle vector Q.
dQ/dt = [B(Q)] w
"""
s2 = math.sin(q[1])
c2 = math.cos(q[1])
s3 = math.sin(q[2])
c3 = math.cos(q[2])
B = np.zeros([3, 3])
B[0, 0] = s3
B[0, 1] = 0
B[0, 2] = -c3
B[1, 0] = s2 * c3
B[1, 1] = 0
B[1, 2] = s2 * s3
B[2, 0] = -c2 * s3
B[2, 1] = s2
B[2, 2] = c2 * c3
B = B / s2
return B
[docs]
def BmatEuler213(q):
"""
BmatEuler213(Q)
B = BmatEuler213(Q) returns the 3x3 matrix which relates the
body angular velocity vector w to the derivative of
(2-1-3) euler angle vector Q.
dQ/dt = [B(Q)] w
"""
s2 = math.sin(q[1])
c2 = math.cos(q[1])
s3 = math.sin(q[2])
c3 = math.cos(q[2])
B = np.zeros([3, 3])
B[0, 0] = s3
B[0, 1] = c3
B[0, 2] = 0
B[1, 0] = c2 * c3
B[1, 1] = -c2 * s3
B[1, 2] = 0
B[2, 0] = s2 * s3
B[2, 1] = s2 * c3
B[2, 2] = c2
B = B / c2
return B
[docs]
def BmatEuler231(q):
"""
BmatEuler231(Q)
B = BmatEuler231(Q) returns the 3x3 matrix which relates the
body angular velocity vector w to the derivative of
(2-3-1) euler angle vector Q.
dQ/dt = [B(Q)] w
"""
s2 = math.sin(q[1])
c2 = math.cos(q[1])
s3 = math.sin(q[2])
c3 = math.cos(q[2])
B = np.zeros([3, 3])
B[0, 0] = 0
B[0, 1] = c3
B[0, 2] = -s3
B[1, 0] = 0
B[1, 1] = c2 * s3
B[1, 2] = c2 * c3
B[2, 0] = c2
B[2, 1] = -s2 * c3
B[2, 2] = s2 * s3
B = B / c2
return B
[docs]
def BmatEuler232(q):
"""
BmatEuler232(Q)
B = BmatEuler232(Q) returns the 3x3 matrix which relates the
body angular velocity vector w to the derivative of
(2-3-2) euler angle vector Q.
dQ/dt = [B(Q)] w
"""
s2 = math.sin(q[1])
c2 = math.cos(q[1])
s3 = math.sin(q[2])
c3 = math.cos(q[2])
B = np.zeros([3, 3])
B[0, 0] = c3
B[0, 1] = 0
B[0, 2] = s3
B[1, 0] = -s2 * s3
B[1, 1] = 0
B[1, 2] = s2 * c3
B[2, 0] = -c2 * c3
B[2, 1] = s2
B[2, 2] = -c2 * s3
B = B / s2
return B
[docs]
def BmatEuler312(q):
"""
BmatEuler312(Q)
B = BmatEuler312(Q) returns the 3x3 matrix which relates the
body angular velocity vector w to the derivative of
(3-1-2) euler angle vector Q.
dQ/dt = [B(Q)] w
"""
s2 = math.sin(q[1])
c2 = math.cos(q[1])
s3 = math.sin(q[2])
c3 = math.cos(q[2])
B = np.zeros([3, 3])
B[0, 0] = -s3
B[0, 1] = 0
B[0, 2] = c3
B[1, 0] = c2 * c3
B[1, 1] = 0
B[1, 2] = c2 * s3
B[2, 0] = s2 * s3
B[2, 1] = c2
B[2, 2] = -s2 * c3
B = B / c2
return B
[docs]
def BmatEuler313(q):
"""
BmatEuler313(Q)
B = BmatEuler313(Q) returns the 3x3 matrix which relates the
body angular velocity vector w to the derivative of
(3-1-3) euler angle vector Q.
dQ/dt = [B(Q)] w
"""
s2 = math.sin(q[1])
c2 = math.cos(q[1])
s3 = math.sin(q[2])
c3 = math.cos(q[2])
B = np.zeros([3, 3])
B[0, 0] = s3
B[0, 1] = c3
B[0, 2] = 0
B[1, 0] = c3 * s2
B[1, 1] = -s3 * s2
B[1, 2] = 0
B[2, 0] = -s3 * c2
B[2, 1] = -c3 * c2
B[2, 2] = s2
B = B / s2
return B
[docs]
def BmatEuler321(q):
"""
BmatEuler321(Q)
B = BmatEuler321(Q) returns the 3x3 matrix which relates the
body angular velocity vector w to the derivative of
(3-2-1) euler angle vector Q.
dQ/dt = [B(Q)] w
"""
s2 = math.sin(q[1])
c2 = math.cos(q[1])
s3 = math.sin(q[2])
c3 = math.cos(q[2])
B = np.zeros([3, 3])
B[0, 0] = 0
B[0, 1] = s3
B[0, 2] = c3
B[1, 0] = 0
B[1, 1] = c2 * c3
B[1, 2] = -c2 * s3
B[2, 0] = c2
B[2, 1] = s2 * s3
B[2, 2] = s2 * c3
B = B / c2
return B
[docs]
def BmatEuler323(q):
"""
BmatEuler323(Q)
B = BmatEuler323(Q) returns the 3x3 matrix which relates the
body angular velocity vector w to the derivative of
(3-2-3) euler angle vector Q.
dQ/dt = [B(Q)] w
"""
s2 = math.sin(q[1])
c2 = math.cos(q[1])
s3 = math.sin(q[2])
c3 = math.cos(q[2])
B = np.zeros([3, 3])
B[0, 0] = -c3
B[0, 1] = s3
B[0, 2] = 0
B[1, 0] = s2 * s3
B[1, 1] = s2 * c3
B[1, 2] = 0
B[2, 0] = c2 * c3
B[2, 1] = -c2 * s3
B[2, 2] = s2
B = B / s2
return B
[docs]
def BmatGibbs(q):
"""
BmatGibbs(Q)
B = BmatGibbs(Q) returns the 3x3 matrix which relates the
body angular velocity vector w to the derivative of
Gibbs vector Q.
dQ/dt = 1/2 [B(Q)] w
"""
B = np.zeros([3, 3])
B[0, 0] = 1 + q[0] * q[0]
B[0, 1] = q[0] * q[1] - q[2]
B[0, 2] = q[0] * q[2] + q[1]
B[1, 0] = q[1] * q[0] + q[2]
B[1, 1] = 1 + q[1] * q[1]
B[1, 2] = q[1] * q[2] - q[0]
B[2, 0] = q[2] * q[0] - q[1]
B[2, 1] = q[2] * q[1] + q[0]
B[2, 2] = 1 + q[2] * q[2]
return B
[docs]
def BmatMRP(q):
"""
BmatMRP(Q)
B = BmatMRP(Q) returns the 3x3 matrix which relates the
body angular velocity vector w to the derivative of
MRP vector Q.
dQ/dt = 1/4 [B(Q)] w
"""
B = np.zeros([3, 3])
s2 = np.dot(q, q)
B[0, 0] = 1 - s2 + 2 * q[0] * q[0]
B[0, 1] = 2 * (q[0] * q[1] - q[2])
B[0, 2] = 2 * (q[0] * q[2] + q[1])
B[1, 0] = 2 * (q[1] * q[0] + q[2])
B[1, 1] = 1 - s2 + 2 * q[1] * q[1]
B[1, 2] = 2 * (q[1] * q[2] - q[0])
B[2, 0] = 2 * (q[2] * q[0] - q[1])
B[2, 1] = 2 * (q[2] * q[1] + q[0])
B[2, 2] = 1 - s2 + 2 * q[2] * q[2]
return B
[docs]
def BdotmatMRP(q, dq):
"""
BdotmatMRP(Q, dQ)
B = BdotmatMRP(Q, dQ) returns the derivative of the 3x3 BmatMRP
matrix, which is used to calculate the second order derivative
of the MRP vector Q.
(d^2Q)/(dt^2) = 1/4 ( [B(Q)] dw + [Bdot(Q,dQ)] w )
"""
Bdot = np.zeros([3, 3])
s = -2 * np.dot(q, dq)
Bdot[0, 0] = s + 4 * (q[0] * dq[0])
Bdot[0, 1] = 2 * (-dq[2] + q[0] * dq[1] + dq[0] * q[1])
Bdot[0, 2] = 2 * ( dq[1] + q[0] * dq[2] + dq[0] * q[2])
Bdot[1, 0] = 2 * ( dq[2] + q[0] * dq[1] + dq[0] * q[1])
Bdot[1, 1] = s + 4 * (q[1] * dq[1])
Bdot[1, 2] = 2 * (-dq[0] + q[1] * dq[2] + dq[1] * q[2])
Bdot[2, 0] = 2 * (-dq[1] + q[0] * dq[2] + dq[0] * q[2])
Bdot[2, 1] = 2 * ( dq[0] + q[1] * dq[2] + dq[1] * q[2])
Bdot[2, 2] = s + 4 * (q[2] * dq[2])
return Bdot
[docs]
def BmatPRV(q):
"""
BmatPRV(Q)
B = BmatPRV(Q) returns the 3x3 matrix which relates the
body angular velocity vector w to the derivative of
principal rotation vector Q.
dQ/dt = [B(Q)] w
"""
p = np.linalg.norm(q)
c = 1 / p / p * (1 - p / 2 / math.tan(p / 2))
B = np.zeros([3, 3])
B[0, 0] = 1 - c * (q[1] * q[1] + q[2] * q[2])
B[0, 1] = -q[2] / 2 + c * (q[0] * q[1])
B[0, 2] = q[1] / 2 + c * (q[0] * q[2])
B[1, 0] = q[2] / 2 + c * (q[0] * q[1])
B[1, 1] = 1 - c * (q[0] * q[0] + q[2] * q[2])
B[1, 2] = -q[0] / 2 + c * (q[1] * q[2])
B[2, 0] = -q[1] / 2 + c * (q[0] * q[2])
B[2, 1] = q[0] / 2 + c * (q[1] * q[2])
B[2, 2] = 1 - c * (q[0] * q[0] + q[1] * q[1])
return B
[docs]
def dEP(q, w):
"""
dEP(Q,W)
dq = dEP(Q,W) returns the euler parameter derivative
for a given euler parameter vector Q and body
angular velocity vector w.
dQ/dt = 1/2 [B(Q)] w
"""
return .5 * np.dot(BmatEP(q), w)
[docs]
def dEuler121(q, w):
"""
dEuler121(Q,W)
dq = dEuler121(Q,W) returns the (1-2-1) euler angle derivative
vector for a given (1-2-1) euler angle vector Q and body
angular velocity vector w.
dQ/dt = [B(Q)] w
"""
return np.dot(BmatEuler121(q), w)
[docs]
def dEuler123(q, w):
"""
dEuler123(Q,W)
dq = dEuler123(Q,W) returns the (1-2-3) euler angle derivative
vector for a given (1-2-3) euler angle vector Q and body
angular velocity vector w.
dQ/dt = [B(Q)] w
"""
return np.dot(BmatEuler123(q), w)
[docs]
def dEuler131(q, w):
"""
dEuler131(Q,W)
dq = dEuler131(Q,W) returns the (1-3-1) euler angle derivative
vector for a given (1-3-1) euler angle vector Q and body
angular velocity vector w.
dQ/dt = [B(Q)] w
"""
return np.dot(BmatEuler131(q), w)
[docs]
def dEuler132(q, w):
"""
dEuler132(Q,W)
dq = dEuler132(Q,W) returns the (1-3-2) euler angle derivative
vector for a given (1-3-2) euler angle vector Q and body
angular velocity vector w.
dQ/dt = [B(Q)] w
"""
return np.dot(BmatEuler132(q), w)
[docs]
def dEuler212(q, w):
"""
dEuler212(Q,W)
dq = dEuler212(Q,W) returns the (2-1-2) euler angle derivative
vector for a given (2-1-2) euler angle vector Q and body
angular velocity vector w.
dQ/dt = [B(Q)] w
"""
return np.dot(BmatEuler212(q), w)
[docs]
def dEuler213(q, w):
"""
dEuler213(Q,W)
dq = dEuler213(Q,W) returns the (2-1-3) euler angle derivative
vector for a given (2-1-3) euler angle vector Q and body
angular velocity vector w.
dQ/dt = [B(Q)] w
"""
return np.dot(BmatEuler213(q), w)
[docs]
def dEuler231(q, w):
"""
dEuler231(Q,W)
dq = dEuler231(Q,W) returns the (2-3-1) euler angle derivative
vector for a given (2-3-1) euler angle vector Q and body
angular velocity vector w.
dQ/dt = [B(Q)] w
"""
return np.dot(BmatEuler231(q), w)
[docs]
def dEuler232(q, w):
"""
dEuler232(Q,W)
dq = dEuler232(Q,W) returns the (2-3-2) euler angle derivative
vector for a given (2-3-2) euler angle vector Q and body
angular velocity vector w.
dQ/dt = [B(Q)] w
"""
return np.dot(BmatEuler232(q), w)
[docs]
def dEuler312(q, w):
"""
dEuler312(Q,W)
dq = dEuler312(Q,W) returns the (3-1-2) euler angle derivative
vector for a given (3-1-2) euler angle vector Q and body
angular velocity vector w.
dQ/dt = [B(Q)] w
"""
return np.dot(BmatEuler312(q), w)
[docs]
def dEuler313(q, w):
"""
dEuler313(Q,W)
dq = dEuler313(Q,W) returns the (3-1-3) euler angle derivative
vector for a given (3-1-3) euler angle vector Q and body
angular velocity vector w.
dQ/dt = [B(Q)] w
"""
return np.dot(BmatEuler313(q), w)
[docs]
def dEuler321(q, w):
"""
dEuler321(Q,W)
dq = dEuler321(Q,W) returns the (3-2-1) euler angle derivative
vector for a given (3-2-1) euler angle vector Q and body
angular velocity vector w.
dQ/dt = [B(Q)] w
"""
return np.dot(BmatEuler321(q), w)
[docs]
def dEuler323(q, w):
"""
dEuler323(Q,W)
dq = dEuler323(Q,W) returns the (3-2-3) euler angle derivative
vector for a given (3-2-3) euler angle vector Q and body
angular velocity vector w.
dQ/dt = [B(Q)] w
"""
return np.dot(BmatEuler323(q), w)
[docs]
def dGibbs(q, w):
"""
dGibbs(Q,W)
dq = dGibbs(Q,W) returns the gibbs derivative
for a given gibbs vector Q and body
angular velocity vector w.
dQ/dt = 1/2 [B(Q)] w
"""
return .5 * np.dot(BmatGibbs(q), w)
[docs]
def dMRP(q, w):
"""
dMRP(Q,W)
dq = dMRP(Q,W) returns the MRP derivative
for a given MRP vector Q and body
angular velocity vector w.
dQ/dt = 1/4 [B(Q)] w
"""
return .25 * np.dot(BmatMRP(q), w)
[docs]
def dMRP2Omega(q, dq):
"""
dMRP(Q,dQ)
W = dMRP(Q,dQ) returns the angular rate
for a given MRP set q MRP derivative dq.
W = 4 [B(Q)]^(-1) dQ
"""
return 4 * np.matmul(BinvMRP(q), dq)
[docs]
def ddMRP(q, dq, w, dw):
"""
dMRP(Q,dQ,W,dW)
ddQ = ddMRP(Q,dQ,W,dW) returns the MRP second derivative
for a given MRP vector q, MRP derivative dq, body
angular velocity vector w and body angulat acceleration
vector dw.
(d^2Q)/(dt^2) = 1/4 ( [B(Q)] dw + [Bdot(Q,dQ)] w )
"""
return .25 * ( np.dot(BmatMRP(q), dw) + np.dot(BdotmatMRP(q, dq), w) )
[docs]
def ddMRP2dOmega(q, dq, ddq):
"""
ddMRP2dOmega(Q,dQ,ddQ)
dW = ddMRP2dOmega(Q,dQ,ddQ) returns the body angular acceleration
dW given the MRP vector Q, the MRP derivative dQ and the MRP
second order derivative ddQ.
dW/dt = 4 [B(Q)]^(-1) ( ddQ - [Bdot(Q,dQ)] [B(Q)]^(-1) dQ )
"""
Binv = BinvMRP(q)
Bdot = BdotmatMRP(q, dq)
return 4 * np.dot(Binv, (ddq - np.dot(Bdot, np.dot(Binv, dq))) )
[docs]
def dPRV(q, w):
"""
dPRV(Q,W)
dq = dPRV(Q,W) returns the PRV derivative
for a given PRV vector Q and body
angular velocity vector w.
dQ/dt = [B(Q)] w
"""
return np.dot(BmatPRV(q), w)
[docs]
def elem2PRV(r):
"""
elem2PRV(R)
Q = elem2PRV(R) translates a prinicpal rotation
element set R into the corresponding principal
rotation vector Q.
"""
q0 = r[1] * r[0]
q1 = r[2] * r[0]
q2 = r[3] * r[0]
q = np.array([q0, q1, q2])
return q
[docs]
def gibbs2C(q):
"""
gibbs2C
C = gibbs2C(Q) returns the direction cosine
matrix in terms of the 3x1 gibbs vector Q.
"""
q1 = q[0]
q2 = q[1]
q3 = q[2]
qm = np.linalg.norm(q)
d1 = qm * qm
C = np.zeros([3, 3])
C[0, 0] = 1 + 2 * q1 * q1 - d1
C[0, 1] = 2 * (q1 * q2 + q3)
C[0, 2] = 2 * (q1 * q3 - q2)
C[1, 0] = 2 * (q2 * q1 - q3)
C[1, 1] = 1 + 2 * q2 * q2 - d1
C[1, 2] = 2 * (q2 * q3 + q1)
C[2, 0] = 2 * (q3 * q1 + q2)
C[2, 1] = 2 * (q3 * q2 - q1)
C[2, 2] = 1 + 2 * q3 * q3 - d1
C = C / (1 + d1)
return C
[docs]
def gibbs2EP(q1):
"""
gibbs2EP(Q1)
Q = gibbs2EP(Q1) translates the gibbs vector Q1
into the euler parameter vector Q.
"""
qm = np.linalg.norm(q1)
ps = np.sqrt(1 + qm * qm)
q = np.array([
1 / ps,
q1[0] / ps,
q1[1] / ps,
q1[2] / ps
])
return q
[docs]
def gibbs2Euler121(q):
"""
gibbs2Euler121(Q)
E = gibbs2Euler121(Q) translates the gibbs
vector Q into the (1-2-1) euler angle vector E.
"""
return EP2Euler121(gibbs2EP(q))
[docs]
def gibbs2Euler123(q):
"""
gibbs2Euler123(Q)
E = gibbs2Euler123(Q) translates the gibbs
vector Q into the (1-2-3) euler angle vector E.
"""
return EP2Euler123(gibbs2EP(q))
[docs]
def gibbs2Euler131(q):
"""
gibbs2Euler131(Q)
E = gibbs2Euler131(Q) translates the gibbs
vector Q into the (1-3-1) euler angle vector E.
"""
return EP2Euler131(gibbs2EP(q))
[docs]
def gibbs2Euler132(q):
"""
gibbs2Euler132(Q)
E = gibbs2Euler132(Q) translates the gibbs
vector Q into the (1-3-2) euler angle vector E.
"""
return EP2Euler132(gibbs2EP(q))
[docs]
def gibbs2Euler212(q):
"""
gibbs2Euler212(Q)
E = gibbs2Euler212(Q) translates the gibbs
vector Q into the (2-1-2) euler angle vector E.
"""
return EP2Euler212(gibbs2EP(q))
[docs]
def gibbs2Euler213(q):
"""
gibbs2Euler213(Q)
E = gibbs2Euler213(Q) translates the gibbs
vector Q into the (2-1-3) euler angle vector E.
"""
return EP2Euler213(gibbs2EP(q))
[docs]
def gibbs2Euler231(q):
"""
gibbs2Euler231(Q)
E = gibbs2Euler231(Q) translates the gibbs
vector Q into the (2-3-1) euler angle vector E.
"""
return EP2Euler231(gibbs2EP(q))
[docs]
def gibbs2Euler232(q):
"""
gibbs2Euler232(Q)
E = gibbs2Euler232(Q) translates the gibbs
vector Q into the (2-3-2) euler angle vector E.
"""
return EP2Euler232(gibbs2EP(q))
[docs]
def gibbs2Euler312(q):
"""
gibbs2Euler312(Q)
E = gibbs2Euler312(Q) translates the gibbs
vector Q into the (3-1-2) euler angle vector E.
"""
return EP2Euler312(gibbs2EP(q))
[docs]
def gibbs2Euler313(q):
"""
gibbs2Euler313(Q)
E = gibbs2Euler313(Q) translates the gibbs
vector Q into the (3-1-3) euler angle vector E.
"""
return EP2Euler313(gibbs2EP(q))
[docs]
def gibbs2Euler321(q):
"""
gibbs2Euler321(Q)
E = gibbs2Euler321(Q) translates the gibbs
vector Q into the (3-2-1) euler angle vector E.
"""
return EP2Euler321(gibbs2EP(q))
[docs]
def gibbs2Euler323(q):
"""
gibbs2Euler323(Q)
E = gibbs2Euler323(Q) translates the gibbs
vector Q into the (3-2-3) euler angle vector E.
"""
return EP2Euler323(gibbs2EP(q))
[docs]
def gibbs2MRP(q1):
"""
gibbs2MRP(Q1)
Q = gibbs2MRP(Q1) translates the gibbs vector Q1
into the MRP vector Q.
"""
return q1 / (1 + math.sqrt(1 + np.dot(q1, q1)))
[docs]
def gibbs2PRV(q):
"""
gibbs2PRV(Q)
Q = gibbs2PRV(Q1) translates the gibbs vector Q1
into the principal rotation vector Q.
"""
tp = np.linalg.norm(q)
p = 2 * math.atan(tp)
q0 = q[0] / tp * p
q1 = q[1] / tp * p
q2 = q[2] / tp * p
q = np.array([q0, q1, q2])
return q
[docs]
def MRP2C(q):
"""
MRP2C
C = MRP2C(Q) returns the direction cosine
matrix in terms of the 3x1 MRP vector Q.
"""
q1 = q[0]
q2 = q[1]
q3 = q[2]
qm = np.linalg.norm(q)
d1 = qm * qm
S = 1 - d1
d = (1 + d1) * (1 + d1)
C = np.zeros((3, 3))
C[0, 0] = 4 * (2 * q1 * q1 - d1) + S * S
C[0, 1] = 8 * q1 * q2 + 4 * q3 * S
C[0, 2] = 8 * q1 * q3 - 4 * q2 * S
C[1, 0] = 8 * q2 * q1 - 4 * q3 * S
C[1, 1] = 4 * (2 * q2 * q2 - d1) + S * S
C[1, 2] = 8 * q2 * q3 + 4 * q1 * S
C[2, 0] = 8 * q3 * q1 + 4 * q2 * S
C[2, 1] = 8 * q3 * q2 - 4 * q1 * S
C[2, 2] = 4 * (2 * q3 * q3 - d1) + S * S
C = C / d
return C
[docs]
def MRP2EP(q1):
"""
MRP2EP(Q1)
Q = MRP2EP(Q1) translates the MRP vector Q1
into the euler parameter vector Q.
"""
qm = np.linalg.norm(q1)
ps = 1 + qm * qm
q = np.array([
(1 - qm * qm) / ps,
2 * q1[0] / ps,
2 * q1[1] / ps,
2 * q1[2] / ps
])
return q
[docs]
def MRP2Euler121(q):
"""
MRP2Euler121(Q)
E = MRP2Euler121(Q) translates the MRP
vector Q into the (1-2-1) euler angle vector E.
"""
return EP2Euler121(MRP2EP(q))
[docs]
def MRP2Euler123(q):
"""
MRP2Euler123(Q)
E = MRP2Euler123(Q) translates the MRP
vector Q into the (1-2-3) euler angle vector E.
"""
return EP2Euler123(MRP2EP(q))
[docs]
def MRP2Euler131(q):
"""
MRP2Euler131(Q)
E = MRP2Euler131(Q) translates the MRP
vector Q into the (1-3-1) euler angle vector E.
"""
return EP2Euler131(MRP2EP(q))
[docs]
def MRP2Euler132(q):
"""
MRP2Euler132(Q)
E = MRP2Euler132(Q) translates the MRP
vector Q into the (1-3-2) euler angle vector E.
"""
return EP2Euler132(MRP2EP(q))
[docs]
def MRP2Euler212(q):
"""
MRP2Euler212(Q)
E = MRP2Euler212(Q) translates the MRP
vector Q into the (2-1-2) euler angle vector E.
"""
return EP2Euler212(MRP2EP(q))
[docs]
def MRP2Euler213(q):
"""
MRP2Euler213(Q)
E = MRP2Euler213(Q) translates the MRP
vector Q into the (2-1-3) euler angle vector E.
"""
return EP2Euler213(MRP2EP(q))
[docs]
def MRP2Euler231(q):
"""
MRP2Euler231(Q)
E = MRP2Euler231(Q) translates the MRP
vector Q into the (2-3-1) euler angle vector E.
"""
return EP2Euler231(MRP2EP(q))
[docs]
def MRP2Euler232(q):
"""
MRP2Euler232(Q)
E = MRP2Euler232(Q) translates the MRP
vector Q into the (2-3-2) euler angle vector E.
"""
return EP2Euler232(MRP2EP(q))
[docs]
def MRP2Euler312(q):
"""
MRP2Euler312(Q)
E = MRP2Euler312(Q) translates the MRP
vector Q into the (3-1-2) euler angle vector E.
"""
return EP2Euler312(MRP2EP(q))
[docs]
def MRP2Euler313(q):
"""
MRP2Euler313(Q)
E = MRP2Euler313(Q) translates the MRP
vector Q into the (3-1-3) euler angle vector E.
"""
return EP2Euler313(MRP2EP(q))
[docs]
def MRP2Euler321(q):
"""
MRP2Euler321(Q)
E = MRP2Euler321(Q) translates the MRP
vector Q into the (3-2-1) euler angle vector E.
"""
return EP2Euler321(MRP2EP(q))
[docs]
def MRP2Euler323(q):
"""
MRP2Euler323(Q)
E = MRP2Euler323(Q) translates the MRP
vector Q into the (3-2-3) euler angle vector E.
"""
return EP2Euler323(MRP2EP(q))
[docs]
def MRP2Gibbs(q1):
"""
MRP2Gibbs(Q1)
Q = MRP2Gibbs(Q1) translates the MRP vector Q1
into the gibbs vector Q.
"""
return 2 * q1 / (1 - np.dot(q1, q1))
[docs]
def MRP2PRV(q):
"""
MRP2PRV(Q1)
Q = MRP2PRV(Q1) translates the MRP vector Q1
into the principal rotation vector Q.
"""
tp = np.linalg.norm(q)
p = 4 * math.atan(tp)
q0 = q[0] / tp * p
q1 = q[1] / tp * p
q2 = q[2] / tp * p
q = np.array([q0, q1, q2])
return q
[docs]
def MRPswitch(q, s2):
"""
MRPswitch
S = MRPswitch(Q,s2) checks to see if norm(Q) is larger than s2.
If yes, then the MRP vector Q is mapped to its shadow set.
"""
q2 = np.dot(q, q)
if (q2 > s2 * s2):
s = -q / q2
else:
s = q
return s
[docs]
def PRV2C(q):
"""
PRV2C
C = PRV2C(Q) returns the direction cosine
matrix in terms of the 3x1 principal rotation vector
Q.
"""
q0 = np.linalg.norm(q)
if q0 == 0.0:
q1 = q[0]
q2 = q[1]
q3 = q[2]
else:
q1 = q[0] / q0
q2 = q[1] / q0
q3 = q[2] / q0
cp = np.cos(q0)
sp = np.sin(q0)
d1 = 1 - cp
C = np.zeros((3, 3))
C[0, 0] = q1 * q1 * d1 + cp
C[0, 1] = q1 * q2 * d1 + q3 * sp
C[0, 2] = q1 * q3 * d1 - q2 * sp
C[1, 0] = q2 * q1 * d1 - q3 * sp
C[1, 1] = q2 * q2 * d1 + cp
C[1, 2] = q2 * q3 * d1 + q1 * sp
C[2, 0] = q3 * q1 * d1 + q2 * sp
C[2, 1] = q3 * q2 * d1 - q1 * sp
C[2, 2] = q3 * q3 * d1 + cp
return C
[docs]
def PRV2EP(qq1):
""""
PRV2EP(Q1)
Q = PRV2EP(Q1) translates the principal rotation vector Q1
into the euler parameter vector Q.
"""
q = np.zeros(4)
q1 = PRV2elem(qq1)
sp = math.sin(q1[0] / 2)
q[0] = math.cos(q1[0] / 2)
q[1] = q1[1] * sp
q[2] = q1[2] * sp
q[3] = q1[3] * sp
return q
[docs]
def PRV2Euler121(q):
"""
PRV2Euler121(Q)
E = PRV2Euler121(Q) translates the principal rotation
vector Q into the (1-2-1) euler angle vector E.
"""
return EP2Euler121(PRV2EP(q))
[docs]
def PRV2Euler123(q):
"""
PRV2Euler123(Q)
E = PRV2Euler123(Q) translates the principal rotation
vector Q into the (1-2-3) euler angle vector E.
"""
return EP2Euler123(PRV2EP(q))
[docs]
def PRV2Euler131(q):
"""
PRV2Euler131(Q)
E = PRV2Euler131(Q) translates the principal rotation
vector Q into the (1-3-1) euler angle vector E.
"""
return EP2Euler131(PRV2EP(q))
[docs]
def PRV2Euler132(q):
"""
PRV2Euler132(Q)
E = PRV2Euler132(Q) translates the principal rotation
vector Q into the (1-3-2) euler angle vector E.
"""
return EP2Euler132(PRV2EP(q))
[docs]
def PRV2Euler212(q):
"""
PRV2Euler212(Q)
E = PRV2Euler212(Q) translates the principal rotation
vector Q into the (2-1-2) euler angle vector E.
"""
return EP2Euler212(PRV2EP(q))
[docs]
def PRV2Euler213(q):
"""
PRV2Euler213(Q)
E = PRV2Euler213(Q) translates the principal rotation
vector Q into the (2-1-3) euler angle vector E.
"""
return EP2Euler213(PRV2EP(q))
[docs]
def PRV2Euler231(q):
"""
PRV2Euler231(Q)
E = PRV2Euler231(Q) translates the principal rotation
vector Q into the (2-3-1) euler angle vector E.
"""
return EP2Euler231(PRV2EP(q))
[docs]
def PRV2Euler232(q):
"""
PRV2Euler232(Q)
E = PRV2Euler232(Q) translates the principal rotation
vector Q into the (2-3-2) euler angle vector E.
"""
return EP2Euler232(PRV2EP(q))
[docs]
def PRV2Euler312(q):
"""
PRV2Euler312(Q)
E = PRV2Euler312(Q) translates the principal rotation
vector Q into the (3-1-2) euler angle vector E.
"""
return EP2Euler312(PRV2EP(q))
[docs]
def PRV2Euler313(q):
"""
PRV2Euler313(Q)
E = PRV2Euler313(Q) translates the principal rotation
vector Q into the (3-1-3) euler angle vector E.
"""
return EP2Euler313(PRV2EP(q))
[docs]
def PRV2Euler321(q):
"""
PRV2Euler321(Q)
E = PRV2Euler321(Q) translates the principal rotation
vector Q into the (3-2-1) euler angle vector E.
"""
return EP2Euler321(PRV2EP(q))
[docs]
def PRV2Euler323(q):
"""
PRV2Euler323(Q)
E = PRV2Euler323(Q) translates the principal rotation
vector Q into the (3-2-3) euler angle vector E.
"""
return EP2Euler323(PRV2EP(q))
[docs]
def PRV2Gibbs(q):
"""
PRV2Gibbs(Q1)
Q = PRV2Gibbs(Q1) translates the principal rotation vector Q1
into the gibbs vector Q.
"""
q = PRV2elem(q)
tp = math.tan(q[0] / 2)
q0 = q[1] * tp
q1 = q[2] * tp
q2 = q[3] * tp
q = np.array([q0, q1, q2])
return q
[docs]
def PRV2MRP(q):
"""
PRV2MRP(Q1)
Q = PRV2MRP(Q1) translates the principal rotation vector Q1
into the MRP vector Q.
"""
q = PRV2elem(q)
tp = math.tan(q[0] / 4)
q0 = q[1] * tp
q1 = q[2] * tp
q2 = q[3] * tp
q = np.array([q0, q1, q2])
return q
[docs]
def subEP(b1, b2):
"""
subEP(B1,B2)
Q = subEP(B1,B2) provides the euler parameter vector
which corresponds to relative rotation from B2
to B1.
"""
q = np.zeros(4)
q[0] = b2[0] * b1[0] + b2[1] * b1[1] + b2[2] * b1[2] + b2[3] * b1[3]
q[1] = -b2[1] * b1[0] + b2[0] * b1[1] + b2[3] * b1[2] - b2[2] * b1[3]
q[2] = -b2[2] * b1[0] - b2[3] * b1[1] + b2[0] * b1[2] + b2[1] * b1[3]
q[3] = -b2[3] * b1[0] + b2[2] * b1[1] - b2[1] * b1[2] + b2[0] * b1[3]
return q
[docs]
def subEuler121(e, e1):
"""
subEuler121(E,E1)
E2 = subEuler121(E,E1) computes the relative
(1-2-1) euler angle vector from E1 to E.
"""
cp = math.cos(e[1])
cp1 = math.cos(e1[1])
sp = math.sin(e[1])
sp1 = math.sin(e1[1])
dum = e[0] - e1[0]
e2 = np.zeros(3)
e2[1] = math.acos(cp1 * cp + sp1 * sp * math.cos(dum))
cp2 = math.cos(e2[1])
e2[0] = Picheck(-e1[2] + math.atan2(sp1 * sp * math.sin(dum), cp2 * cp1 - cp))
e2[2] = Picheck(e[2] - math.atan2(sp1 * sp * math.sin(dum), cp1 - cp * cp2))
return e2
[docs]
def subEuler123(e, e1):
"""
subEuler123(E,E1)
E2 = subEuler123(E,E1) computes the relative
(1-2-3) euler angle vector from E1 to E.
"""
C = euler1232C(e)
C1 = euler1232C(e1)
C2 = np.dot(C, C1.T)
e2 = C2Euler123(C2)
return e2
[docs]
def subEuler131(e, e1):
"""
subEuler131(E,E1)
E2 = subEuler131(E,E1) computes the relative
(1-3-1) euler angle vector from E1 to E.
"""
cp = math.cos(e[1])
cp1 = math.cos(e1[1])
sp = math.sin(e[1])
sp1 = math.sin(e1[1])
dum = e[0] - e1[0]
e2 = np.zeros(3)
e2[1] = math.acos(cp1 * cp + sp1 * sp * math.cos(dum))
cp2 = math.cos(e2[1])
e2[0] = Picheck(-e1[2] + math.atan2(sp1 * sp * math.sin(dum), cp2 * cp1 - cp))
e2[2] = Picheck(e[2] - math.atan2(sp1 * sp * math.sin(dum), cp1 - cp * cp2))
return e2
[docs]
def subEuler132(e, e1):
"""
subEuler132(E,E1)
E2 = subEuler132(E,E1) computes the relative
(1-3-2) euler angle vector from E1 to E.
"""
C = euler1322C(e)
C1 = euler1322C(e1)
C2 = np.dot(C, C1.T)
e2 = C2Euler132(C2)
return e2
[docs]
def subEuler212(e, e1):
"""
subEuler212(E,E1)
E2 = subEuler212(E,E1) computes the relative
(2-1-2) euler angle vector from E1 to E.
"""
cp = math.cos(e[1])
cp1 = math.cos(e1[1])
sp = math.sin(e[1])
sp1 = math.sin(e1[1])
dum = e[0] - e1[0]
e2 = np.zeros(3)
e2[1] = math.acos(cp1 * cp + sp1 * sp * math.cos(dum))
cp2 = math.cos(e2[1])
e2[0] = Picheck(-e1[2] + math.atan2(sp1 * sp * math.sin(dum), cp2 * cp1 - cp))
e2[2] = Picheck(e[2] - math.atan2(sp1 * sp * math.sin(dum), cp1 - cp * cp2))
return e2
[docs]
def subEuler213(e, e1):
"""
subEuler213(E,E1)
E2 = subEuler213(E,E1) computes the relative
(2-1-3) euler angle vector from E1 to E.
"""
C = euler2132C(e)
C1 = euler2132C(e1)
C2 = np.dot(C, C1.T)
e2 = C2Euler213(C2)
return e2
[docs]
def subEuler231(e, e1):
"""
subEuler231(E,E1)
E2 = subEuler231(E,E1) computes the relative
(2-3-1) euler angle vector from E1 to E.
"""
C = euler2312C(e)
C1 = euler2312C(e1)
C2 = np.dot(C, C1.T)
e2 = C2Euler231(C2)
return e2
[docs]
def subEuler232(e, e1):
"""
subEuler232(E,E1)
E2 = subEuler232(E,E1) computes the relative
(2-3-2) euler angle vector from E1 to E.
"""
cp = math.cos(e[1])
cp1 = math.cos(e1[1])
sp = math.sin(e[1])
sp1 = math.sin(e1[1])
dum = e[0] - e1[0]
e2 = np.zeros(3)
e2[1] = math.acos(cp1 * cp + sp1 * sp * math.cos(dum))
cp2 = math.cos(e2[1])
e2[0] = Picheck(-e1[2] + math.atan2(sp1 * sp * math.sin(dum), cp2 * cp1 - cp))
e2[2] = Picheck(e[2] - math.atan2(sp1 * sp * math.sin(dum), cp1 - cp * cp2))
return e2
[docs]
def subEuler312(e, e1):
"""
subEuler312(E,E1)
E2 = subEuler312(E,E1) computes the relative
(3-1-2) euler angle vector from E1 to E.
"""
C = euler3122C(e)
C1 = euler3122C(e1)
C2 = np.dot(C, C1.T)
e2 = C2Euler312(C2)
return e2
[docs]
def subEuler313(e, e1):
"""
subEuler313(E,E1)
E2 = subEuler313(E,E1) computes the relative
(3-1-3) euler angle vector from E1 to E.
"""
cp = math.cos(e[1])
cp1 = math.cos(e1[1])
sp = math.sin(e[1])
sp1 = math.sin(e1[1])
dum = e[0] - e1[0]
e2 = np.zeros(3)
e2[1] = math.acos(cp1 * cp + sp1 * sp * math.cos(dum))
cp2 = math.cos(e2[1])
e2[0] = Picheck(-e1[2] + math.atan2(sp1 * sp * math.sin(dum), cp2 * cp1 - cp))
e2[2] = Picheck(e[2] - math.atan2(sp1 * sp * math.sin(dum), cp1 - cp * cp2))
return e2
[docs]
def subEuler321(e, e1):
"""
subEuler321(E,E1)
E2 = subEuler321(E,E1) computes the relative
(3-2-1) euler angle vector from E1 to E.
"""
C = euler3212C(e)
C1 = euler3212C(e1)
C2 = np.dot(C, C1.T)
e2 = C2Euler321(C2)
return e2
[docs]
def subEuler323(e, e1):
"""
subEuler323(E,E1)
E2 = subEuler323(E,E1) computes the relative
(3-2-3) euler angle vector from E1 to E.
"""
cp = math.cos(e[1])
cp1 = math.cos(e1[1])
sp = math.sin(e[1])
sp1 = math.sin(e1[1])
dum = e[0] - e1[0]
e2 = np.zeros(3)
e2[1] = math.acos(cp1 * cp + sp1 * sp * math.cos(dum))
cp2 = math.cos(e2[1])
e2[0] = Picheck(-e1[2] + math.atan2(sp1 * sp * math.sin(dum), cp2 * cp1 - cp))
e2[2] = Picheck(e[2] - math.atan2(sp1 * sp * math.sin(dum), cp1 - cp * cp2))
return e2
[docs]
def subGibbs(q1, q2):
"""
subGibbs(Q1,Q2)
Q = subGibbs(Q1,Q2) provides the gibbs vector
which corresponds to relative rotation from Q2
to Q1.
"""
return (q1 - q2 + np.cross(q1, q2)) / (1. + np.dot(q1, q2))
[docs]
def subMRP(q1, q2):
"""
subMRP(Q1,Q2)
Q = subMRP(Q1,Q2) provides the MRP vector
which corresponds to relative rotation from Q2
to Q1.
"""
den = 1 + np.dot(q1, q1) * np.dot(q2, q2) + 2 * np.dot(q1, q2)
if den < 1e-5:
q2 = -q2/np.dot(q2,q2)
den = 1 + np.dot(q1, q1) * np.dot(q2, q2) + 2 * np.dot(q1, q2)
num = (1 - np.dot(q2, q2)) * q1 - (1 - np.dot(q1, q1)) * q2 + 2 * np.cross(q1, q2)
q = num / den
if np.dot(q,q) > 1:
q = -q/np.dot(q, q)
return q
[docs]
def subPRV(q1, q2):
"""
subPRV(Q1,Q2)
Q = subPRV(Q1,Q2) provides the prinipal rotation vector
which corresponds to relative principal rotation from Q2
to Q1.
"""
q1 = PRV2elem(q1)
q2 = PRV2elem(q2)
cp1 = math.cos(q1[0] / 2)
cp2 = math.cos(q2[0] / 2)
sp1 = math.sin(q1[0] / 2)
sp2 = math.sin(q2[0] / 2)
e1 = q1[1:4]
e2 = q2[1:4]
p = 2 * math.acos(cp1 * cp2 + sp1 * sp2 * np.dot(e1, e2))
sp = math.sin(p / 2)
e = (-cp1 * sp2 * e2 + cp2 * sp1 * e1 + sp1 * sp2 * np.cross(e1, e2)) / sp
q = p * e
return q
[docs]
def EP2C(q):
"""
EP2C
C = EP2C(Q) returns the direction math.cosine
matrix in terms of the 4x1 euler parameter vector
Q. The first element is the non-dimensional euler
parameter, while the remain three elements form
the eulerparameter vector.
"""
q0 = q[0]
q1 = q[1]
q2 = q[2]
q3 = q[3]
C = np.zeros([3, 3])
C[0, 0] = q0 * q0 + q1 * q1 - q2 * q2 - q3 * q3
C[0, 1] = 2 * (q1 * q2 + q0 * q3)
C[0, 2] = 2 * (q1 * q3 - q0 * q2)
C[1, 0] = 2 * (q1 * q2 - q0 * q3)
C[1, 1] = q0 * q0 - q1 * q1 + q2 * q2 - q3 * q3
C[1, 2] = 2 * (q2 * q3 + q0 * q1)
C[2, 0] = 2 * (q1 * q3 + q0 * q2)
C[2, 1] = 2 * (q2 * q3 - q0 * q1)
C[2, 2] = q0 * q0 - q1 * q1 - q2 * q2 + q3 * q3
return C
[docs]
def EP2Euler121(q):
"""
EP2Euler121(Q)
E = EP2Euler121(Q) translates the euler parameter
vector Q into the corresponding (1-2-1) euler angle
vector E.
"""
t1 = math.atan2(q[3], q[2])
t2 = math.atan2(q[1], q[0])
e1 = t1 + t2
e2 = 2 * math.acos(math.sqrt(q[0] * q[0] + q[1] * q[1]))
e3 = t2 - t1
e = np.array([e1, e2, e3])
return e
[docs]
def EP2Euler123(q):
"""
EP2Euler123
Q = EP2Euler123(Q) translates the euler parameter vector
Q into the corresponding (1-2-3) euler angle set.
"""
q0 = q[0]
q1 = q[1]
q2 = q[2]
q3 = q[3]
e1 = math.atan2(-2 * (q2 * q3 - q0 * q1), q0 * q0 - q1 * q1 - q2 * q2 + q3 * q3)
e2 = math.asin(2 * (q1 * q3 + q0 * q2))
e3 = math.atan2(-2 * (q1 * q2 - q0 * q3), q0 * q0 + q1 * q1 - q2 * q2 - q3 * q3)
e = np.array([e1, e2, e3])
return e
[docs]
def EP2Euler131(q):
"""
EP2Euler131(Q)
E = EP2Euler131(Q) translates the euler parameter
vector Q into the corresponding (1-3-1) euler angle
vector E.
"""
t1 = math.atan2(q[2], q[3])
t2 = math.atan2(q[1], q[0])
e1 = t2 - t1
e2 = 2 * math.acos(math.sqrt(q[0] * q[0] + q[1] * q[1]))
e3 = t2 + t1
e = np.array([e1, e2, e3])
return e
[docs]
def EP2Euler132(q):
"""
EP2Euler132
E = EP2Euler132(Q) translates the euler parameter vector
Q into the corresponding (1-3-2) euler angle set.
"""
q0 = q[0]
q1 = q[1]
q2 = q[2]
q3 = q[3]
e1 = math.atan2(2 * (q2 * q3 + q0 * q1), q0 * q0 - q1 * q1 + q2 * q2 - q3 * q3)
e2 = math.asin(-2 * (q1 * q2 - q0 * q3))
e3 = math.atan2(2 * (q1 * q3 + q0 * q2), q0 * q0 + q1 * q1 - q2 * q2 - q3 * q3)
e = np.array([e1, e2, e3])
return e
[docs]
def EP2Euler212(q):
"""
EP2Euler212(Q)
E = EP2Euler212(Q) translates the euler parameter
vector Q into the corresponding (2-1-2) euler angle
vector E.
"""
t1 = math.atan2(q[3], q[1])
t2 = math.atan2(q[2], q[0])
e1 = t2 - t1
e2 = 2 * math.acos(math.sqrt(q[0] * q[0] + q[2] * q[2]))
e3 = t2 + t1
e = np.array([e1, e2, e3])
return e
[docs]
def EP2Euler213(q):
"""
EP2Euler213
Q = EP2Euler213(Q) translates the euler parameter vector
Q into the corresponding (2-1-3) euler angle set.
"""
q0 = q[0]
q1 = q[1]
q2 = q[2]
q3 = q[3]
e1 = math.atan2(2 * (q1 * q3 + q0 * q2), q0 * q0 - q1 * q1 - q2 * q2 + q3 * q3)
e2 = math.asin(-2 * (q2 * q3 - q0 * q1))
e3 = math.atan2(2 * (q1 * q2 + q0 * q3), q0 * q0 - q1 * q1 + q2 * q2 - q3 * q3)
e = np.array([e1, e2, e3])
return e
[docs]
def EP2Euler231(q):
"""
EP2Euler231
E = EP2Euler231(Q) translates the euler parameter vector
Q into the corresponding (2-3-1) euler angle set.
"""
q0 = q[0]
q1 = q[1]
q2 = q[2]
q3 = q[3]
e1 = math.atan2(-2 * (q1 * q3 - q0 * q2), q0 * q0 + q1 * q1 - q2 * q2 - q3 * q3)
e2 = math.asin(2 * (q1 * q2 + q0 * q3))
e3 = math.atan2(-2 * (q2 * q3 - q0 * q1), q0 * q0 - q1 * q1 + q2 * q2 - q3 * q3)
e = np.array([e1, e2, e3])
return e
[docs]
def EP2Euler232(q):
"""
EP2Euler232(Q)
E = EP2Euler232(Q) translates the euler parameter
vector Q into the corresponding (2-3-2) euler angle
vector E.
"""
t1 = math.atan2(q[1], q[3])
t2 = math.atan2(q[2], q[0])
e1 = t1 + t2
e2 = 2 * math.acos(math.sqrt(q[0] * q[0] + q[2] * q[2]))
e3 = t2 - t1
e = np.array([e1, e2, e3])
return e
[docs]
def EP2Euler312(q):
"""
EP2Euler312
E = EP2Euler312(Q) translates the euler parameter vector
Q into the corresponding (3-1-2) euler angle set.
"""
q0 = q[0]
q1 = q[1]
q2 = q[2]
q3 = q[3]
e1 = math.atan2(-2 * (q1 * q2 - q0 * q3), q0 * q0 - q1 * q1 + q2 * q2 - q3 * q3)
e2 = math.asin(2 * (q2 * q3 + q0 * q1))
e3 = math.atan2(-2 * (q1 * q3 - q0 * q2), q0 * q0 - q1 * q1 - q2 * q2 + q3 * q3)
e = np.array([e1, e2, e3])
return e
[docs]
def EP2Euler313(q):
"""
EP2Euler313(Q)
E = EP2Euler313(Q) translates the euler parameter
vector Q into the corresponding (3-1-3) euler angle
vector E.
"""
t1 = math.atan2(q[2], q[1])
t2 = math.atan2(q[3], q[0])
e1 = t1 + t2
e2 = 2 * math.acos(math.sqrt(q[0] * q[0] + q[3] * q[3]))
e3 = t2 - t1
e = np.array([e1, e2, e3])
return e
[docs]
def EP2Euler321(q):
"""
EP2Euler321
E = EP2Euler321(Q) translates the euler parameter vector
Q into the corresponding (3-2-1) euler angle set.
"""
q0 = q[0]
q1 = q[1]
q2 = q[2]
q3 = q[3]
e1 = math.atan2(2 * (q1 * q2 + q0 * q3), q0 * q0 + q1 * q1 - q2 * q2 - q3 * q3)
e2 = math.asin(-2 * (q1 * q3 - q0 * q2))
e3 = math.atan2(2 * (q2 * q3 + q0 * q1), q0 * q0 - q1 * q1 - q2 * q2 + q3 * q3)
e = np.array([e1, e2, e3])
return e
[docs]
def EP2Euler323(q):
"""
EP2Euler323(Q)
E = EP2Euler323(Q) translates the euler parameter
vector Q into the corresponding (3-2-3) euler angle
vector E.
"""
t1 = math.atan2(q[1], q[2])
t2 = math.atan2(q[3], q[0])
e1 = t2 - t1
e2 = 2 * math.acos(math.sqrt(q[0] * q[0] + q[3] * q[3]))
e3 = t2 + t1
e = np.array([e1, e2, e3])
return e
[docs]
def EP2Gibbs(q):
"""
EP2Gibbs(Q1)
Q = EP2Gibbs(Q1) translates the euler parameter vector Q1
into the gibbs vector Q.
"""
q1 = q[1] / q[0]
q2 = q[2] / q[0]
q3 = q[3] / q[0]
return np.array([q1, q2, q3])
[docs]
def EP2MRP(q):
"""
EP2MRP(Q1)
Q = EP2MRP(Q1) translates the euler parameter vector Q1
into the MRP vector Q.
"""
if q[0] < 0:
q = -q
q1 = q[1] / (1 + q[0])
q2 = q[2] / (1 + q[0])
q3 = q[3] / (1 + q[0])
return np.array([q1, q2, q3])
[docs]
def EP2PRV(q):
"""
EP2PRV(Q1)
Q = EP2PRV(Q1) translates the euler parameter vector Q1
into the principal rotation vector Q.
"""
p = 2 * math.acos(q[0])
sp = math.sin(p / 2)
q1 = q[1] / sp * p
q2 = q[2] / sp * p
q3 = q[3] / sp * p
return np.array([q1, q2, q3])
[docs]
def euler1(x):
"""
EULER1 Elementary rotation matrix
Returns the elementary rotation matrix about the first body axis.
"""
m = np.identity(3)
m[1, 1] = math.cos(x)
m[1, 2] = math.sin(x)
m[2, 1] = -m[1, 2]
m[2, 2] = m[1, 1]
return m
[docs]
def euler2(x):
"""
EULER2 Elementary rotation matrix
Returns the elementary rotation matrix about the
second body axis.
"""
m = np.identity(3)
m[0, 0] = math.cos(x)
m[0, 2] = -math.sin(x)
m[2, 0] = -m[0, 2]
m[2, 2] = m[0, 0]
return m
[docs]
def euler3(x):
"""
EULER3 Elementary rotation matrix
Returns the elementary rotation matrix about the
third body axis.
"""
m = np.identity(3)
m[0, 0] = math.cos(x)
m[0, 1] = math.sin(x)
m[1, 0] = -m[0, 1]
m[1, 1] = m[0, 0]
return m
[docs]
def euler1212C(q):
"""
Euler1212C
C = euler1212C(Q) returns the direction cosine
matrix in terms of the 1-2-1 euler angles.
Input Q must be a 3x1 vector of euler angles.
"""
st1 = math.sin(q[0])
ct1 = math.cos(q[0])
st2 = math.sin(q[1])
ct2 = math.cos(q[1])
st3 = math.sin(q[2])
ct3 = math.cos(q[2])
C = np.identity(3)
C[0, 0] = ct2
C[0, 1] = st1 * st2
C[0, 2] = -ct1 * st2
C[1, 0] = st2 * st3
C[1, 1] = ct1 * ct3 - ct2 * st1 * st3
C[1, 2] = ct3 * st1 + ct1 * ct2 * st3
C[2, 0] = ct3 * st2
C[2, 1] = -ct2 * ct3 * st1 - ct1 * st3
C[2, 2] = ct1 * ct2 * ct3 - st1 * st3
return C
[docs]
def euler1212EP(e):
"""
Euler1212EP(E)
Q = euler1212EP(E) translates the 121 euler angle
vector E into the euler parameter vector Q.
"""
e1 = e[0] / 2
e2 = e[1] / 2
e3 = e[2] / 2
q0 = math.cos(e2) * math.cos(e1 + e3)
q1 = math.cos(e2) * math.sin(e1 + e3)
q2 = math.sin(e2) * math.cos(e1 - e3)
q3 = math.sin(e2) * math.sin(e1 - e3)
return np.array([q0, q1, q2, q3])
[docs]
def euler1212Gibbs(e):
"""
Euler1212Gibbs(E)
Q = euler1212Gibbs(E) translates the (1-2-1) euler
angle vector E into the gibbs vector Q.
"""
return EP2Gibbs(euler1212EP(e))
[docs]
def euler1212MRP(e):
"""
euler1212MRP(E)
Q = euler1212MRP(E) translates the (1-2-1) euler
angle vector E into the MRP vector Q.
"""
return EP2MRP(euler1212EP(e))
[docs]
def euler1212PRV(e):
"""
euler1212PRV(E)
Q = euler1212PRV(E) translates the (1-2-1) euler
angle vector E into the principal rotation vector Q.
"""
return EP2PRV(euler1212EP(e))
[docs]
def euler1232C(q):
"""
euler1232C
C = euler1232C(Q) returns the direction cosine
matrix in terms of the 1-2-3 euler angles.
Input Q must be a 3x1 vector of euler angles.
"""
st1 = math.sin(q[0])
ct1 = math.cos(q[0])
st2 = math.sin(q[1])
ct2 = math.cos(q[1])
st3 = math.sin(q[2])
ct3 = math.cos(q[2])
C = np.identity(3)
C[0, 0] = ct2 * ct3
C[0, 1] = ct3 * st1 * st2 + ct1 * st3
C[0, 2] = st1 * st3 - ct1 * ct3 * st2
C[1, 0] = -ct2 * st3
C[1, 1] = ct1 * ct3 - st1 * st2 * st3
C[1, 2] = ct3 * st1 + ct1 * st2 * st3
C[2, 0] = st2
C[2, 1] = -ct2 * st1
C[2, 2] = ct1 * ct2
return C
[docs]
def euler1232EP(e):
"""
euler1232EP(E)
Q = euler1232EP(E) translates the 123 euler angle
vector E into the euler parameter vector Q.
"""
c1 = math.cos(e[0] / 2)
s1 = math.sin(e[0] / 2)
c2 = math.cos(e[1] / 2)
s2 = math.sin(e[1] / 2)
c3 = math.cos(e[2] / 2)
s3 = math.sin(e[2] / 2)
q0 = c1 * c2 * c3 - s1 * s2 * s3
q1 = s1 * c2 * c3 + c1 * s2 * s3
q2 = c1 * s2 * c3 - s1 * c2 * s3
q3 = c1 * c2 * s3 + s1 * s2 * c3
return np.array([q0, q1, q2, q3])
[docs]
def euler1232Gibbs(e):
"""
euler1232Gibbs(E)
Q = euler1232Gibbs(E) translates the (1-2-3) euler
angle vector E into the gibbs vector Q.
"""
return EP2Gibbs(euler1232EP(e))
[docs]
def euler1232MRP(e):
"""
euler1232MRP(E)
Q = euler1232MRP(E) translates the (1-2-3) euler
angle vector E into the MRP vector Q.
"""
return EP2MRP(euler1232EP(e))
[docs]
def euler1232PRV(e):
"""
euler1232PRV(E)
Q = euler1232PRV(E) translates the (1-2-3) euler
angle vector E into the principal rotation vector Q.
"""
return EP2PRV(euler1232EP(e))
[docs]
def euler1312C(q):
"""
euler1312C
C = euler1312C(Q) returns the direction cosine
matrix in terms of the 1-3-1 euler angles.
Input Q must be a 3x1 vector of euler angles.
"""
st1 = math.sin(q[0])
ct1 = math.cos(q[0])
st2 = math.sin(q[1])
ct2 = math.cos(q[1])
st3 = math.sin(q[2])
ct3 = math.cos(q[2])
C = np.identity(3)
C[0, 0] = ct2
C[0, 1] = ct1 * st2
C[0, 2] = st1 * st2
C[1, 0] = -ct3 * st2
C[1, 1] = ct1 * ct2 * ct3 - st1 * st3
C[1, 2] = ct2 * ct3 * st1 + ct1 * st3
C[2, 0] = st2 * st3
C[2, 1] = -ct3 * st1 - ct1 * ct2 * st3
C[2, 2] = ct1 * ct3 - ct2 * st1 * st3
return C
[docs]
def euler1312EP(e):
"""
euler1312EP(E)
Q = euler1312EP(E) translates the 131 euler angle
vector E into the euler parameter vector Q.
"""
e1 = e[0] / 2
e2 = e[1] / 2
e3 = e[2] / 2
q0 = math.cos(e2) * math.cos(e1 + e3)
q1 = math.cos(e2) * math.sin(e1 + e3)
q2 = math.sin(e2) * math.sin(-e1 + e3)
q3 = math.sin(e2) * math.cos(-e1 + e3)
return np.array([q0, q1, q2, q3])
[docs]
def euler1312Gibbs(e):
"""
euler1312Gibbs(E)
Q = euler1312Gibbs(E) translates the (1-3-1) euler
angle vector E into the gibbs vector Q.
"""
return EP2Gibbs(euler1312EP(e))
[docs]
def euler1312MRP(e):
"""
euler1312MRP(E)
Q = euler1312MRP(E) translates the (1-3-1) euler
angle vector E into the MRP vector Q.
"""
return EP2MRP(euler1312EP(e))
[docs]
def euler1312PRV(e):
"""
euler1312PRV(E)
Q = euler1312PRV(E) translates the (1-3-1) euler
angle vector E into the principal rotation vector Q.
"""
return EP2PRV(euler1312EP(e))
[docs]
def euler1322C(q):
"""
euler1322C
C = euler1322C(Q) returns the direction cosine
matrix in terms of the 1-3-2 euler angles.
Input Q must be a 3x1 vector of euler angles.
"""
st1 = math.sin(q[0])
ct1 = math.cos(q[0])
st2 = math.sin(q[1])
ct2 = math.cos(q[1])
st3 = math.sin(q[2])
ct3 = math.cos(q[2])
C = np.identity(3)
C[0, 0] = ct2 * ct3
C[0, 1] = ct1 * ct3 * st2 + st1 * st3
C[0, 2] = ct3 * st1 * st2 - ct1 * st3
C[1, 0] = -st2
C[1, 1] = ct1 * ct2
C[1, 2] = ct2 * st1
C[2, 0] = ct2 * st3
C[2, 1] = -ct3 * st1 + ct1 * st2 * st3
C[2, 2] = ct1 * ct3 + st1 * st2 * st3
return C
[docs]
def euler1322EP(e):
"""
euler1322EP(E)
Q = euler1322EP(E) translates the 132 euler angle
vector E into the euler parameter vector Q.
"""
c1 = math.cos(e[0] / 2)
s1 = math.sin(e[0] / 2)
c2 = math.cos(e[1] / 2)
s2 = math.sin(e[1] / 2)
c3 = math.cos(e[2] / 2)
s3 = math.sin(e[2] / 2)
q0 = c1 * c2 * c3 + s1 * s2 * s3
q1 = s1 * c2 * c3 - c1 * s2 * s3
q2 = c1 * c2 * s3 - s1 * s2 * c3
q3 = c1 * s2 * c3 + s1 * c2 * s3
return np.array([q0, q1, q2, q3])
[docs]
def euler1322Gibbs(e):
"""
euler1322Gibbs(E)
Q = euler1322Gibbs(E) translates the (1-3-2) euler
angle vector E into the gibbs vector Q.
"""
return EP2Gibbs(euler1322EP(e))
[docs]
def euler1322MRP(e):
"""
euler1322MRP(E)
Q = euler1322MRP(E) translates the (1-3-2) euler
angle vector E into the MRP vector Q.
"""
return EP2MRP(euler1322EP(e))
[docs]
def euler1322PRV(e):
"""
euler1322PRV(E)
Q = euler1322PRV(E) translates the (1-3-2) euler
angle vector E into the principal rotation vector Q.
"""
return EP2PRV(euler1322EP(e))
[docs]
def euler2122C(q):
"""
euler2122C
C = euler2122C(Q) returns the direction cosine
matrix in terms of the 2-1-2 euler angles.
Input Q must be a 3x1 vector of euler angles.
"""
st1 = math.sin(q[0])
ct1 = math.cos(q[0])
st2 = math.sin(q[1])
ct2 = math.cos(q[1])
st3 = math.sin(q[2])
ct3 = math.cos(q[2])
C = np.identity(3)
C[0, 0] = ct1 * ct3 - ct2 * st1 * st3
C[0, 1] = st2 * st3
C[0, 2] = -ct3 * st1 - ct1 * ct2 * st3
C[1, 0] = st1 * st2
C[1, 1] = ct2
C[1, 2] = ct1 * st2
C[2, 0] = ct2 * ct3 * st1 + ct1 * st3
C[2, 1] = -ct3 * st2
C[2, 2] = ct1 * ct2 * ct3 - st1 * st3
return C
[docs]
def euler2132C(q):
"""
euler2132C
C = euler2132C(Q) returns the direction cosine
matrix in terms of the 2-1-3 euler angles.
Input Q must be a 3x1 vector of euler angles.
"""
st1 = math.sin(q[0])
ct1 = math.cos(q[0])
st2 = math.sin(q[1])
ct2 = math.cos(q[1])
st3 = math.sin(q[2])
ct3 = math.cos(q[2])
C = np.identity(3)
C[0, 0] = ct1 * ct3 + st1 * st2 * st3
C[0, 1] = ct2 * st3
C[0, 2] = -ct3 * st1 + ct1 * st2 * st3
C[1, 0] = ct3 * st1 * st2 - ct1 * st3
C[1, 1] = ct2 * ct3
C[1, 2] = ct1 * ct3 * st2 + st1 * st3
C[2, 0] = ct2 * st1
C[2, 1] = -st2
C[2, 2] = ct1 * ct2
return C
[docs]
def euler2312C(q):
"""
euler2312C
C = euler2312C(Q) returns the direction cosine
matrix in terms of the 2-3-1 euler angles.
Input Q must be a 3x1 vector of euler angles.
"""
st1 = math.sin(q[0])
ct1 = math.cos(q[0])
st2 = math.sin(q[1])
ct2 = math.cos(q[1])
st3 = math.sin(q[2])
ct3 = math.cos(q[2])
C = np.identity(3)
C[0, 0] = ct1 * ct2
C[0, 1] = st2
C[0, 2] = -ct2 * st1
C[1, 0] = -ct1 * ct3 * st2 + st1 * st3
C[1, 1] = ct2 * ct3
C[1, 2] = ct3 * st1 * st2 + ct1 * st3
C[2, 0] = ct3 * st1 + ct1 * st2 * st3
C[2, 1] = -ct2 * st3
C[2, 2] = ct1 * ct3 - st1 * st2 * st3
return C
[docs]
def euler2322C(q):
"""
euler2322C
C = euler2322C(Q) returns the direction cosine
matrix in terms of the 2-3-2 euler angles.
Input Q must be a 3x1 vector of euler angles.
"""
st1 = math.sin(q[0])
ct1 = math.cos(q[0])
st2 = math.sin(q[1])
ct2 = math.cos(q[1])
st3 = math.sin(q[2])
ct3 = math.cos(q[2])
C = np.identity(3)
C[0, 0] = ct1 * ct2 * ct3 - st1 * st3
C[0, 1] = ct3 * st2
C[0, 2] = -ct2 * ct3 * st1 - ct1 * st3
C[1, 0] = -ct1 * st2
C[1, 1] = ct2
C[1, 2] = st1 * st2
C[2, 0] = ct3 * st1 + ct1 * ct2 * st3
C[2, 1] = st2 * st3
C[2, 2] = ct1 * ct3 - ct2 * st1 * st3
return C
[docs]
def euler3122C(q):
"""
euler3122C
C = euler3122C(Q) returns the direction cosine
matrix in terms of the 1-2-3 euler angles.
Input Q must be a 3x1 vector of euler angles.
"""
st1 = math.sin(q[0])
ct1 = math.cos(q[0])
st2 = math.sin(q[1])
ct2 = math.cos(q[1])
st3 = math.sin(q[2])
ct3 = math.cos(q[2])
C = np.identity(3)
C[0, 0] = ct1 * ct3 - st1 * st2 * st3
C[0, 1] = ct3 * st1 + ct1 * st2 * st3
C[0, 2] = -ct2 * st3
C[1, 0] = -ct2 * st1
C[1, 1] = ct1 * ct2
C[1, 2] = st2
C[2, 0] = ct3 * st1 * st2 + ct1 * st3
C[2, 1] = st1 * st3 - ct1 * ct3 * st2
C[2, 2] = ct2 * ct3
return C
[docs]
def euler3132C(q):
"""
euler3132C
C = euler3132C(Q) returns the direction cosine
matrix in terms of the 3-1-3 euler angles.
Input Q must be a 3x1 vector of euler angles.
"""
st1 = math.sin(q[0])
ct1 = math.cos(q[0])
st2 = math.sin(q[1])
ct2 = math.cos(q[1])
st3 = math.sin(q[2])
ct3 = math.cos(q[2])
C = np.identity(3)
C[0, 0] = ct3 * ct1 - st3 * ct2 * st1
C[0, 1] = ct3 * st1 + st3 * ct2 * ct1
C[0, 2] = st3 * st2
C[1, 0] = -st3 * ct1 - ct3 * ct2 * st1
C[1, 1] = -st3 * st1 + ct3 * ct2 * ct1
C[1, 2] = ct3 * st2
C[2, 0] = st2 * st1
C[2, 1] = -st2 * ct1
C[2, 2] = ct2
return C
[docs]
def euler3212C(q):
"""
euler3212C
C = euler3212C(Q) returns the direction cosine
matrix in terms of the 3-2-1 euler angles.
Input Q must be a 3x1 vector of euler angles.
"""
st1 = math.sin(q[0])
ct1 = math.cos(q[0])
st2 = math.sin(q[1])
ct2 = math.cos(q[1])
st3 = math.sin(q[2])
ct3 = math.cos(q[2])
C = np.identity(3)
C[0, 0] = ct2 * ct1
C[0, 1] = ct2 * st1
C[0, 2] = -st2
C[1, 0] = st3 * st2 * ct1 - ct3 * st1
C[1, 1] = st3 * st2 * st1 + ct3 * ct1
C[1, 2] = st3 * ct2
C[2, 0] = ct3 * st2 * ct1 + st3 * st1
C[2, 1] = ct3 * st2 * st1 - st3 * ct1
C[2, 2] = ct3 * ct2
return C
[docs]
def euler3232C(q):
"""
euler3232C
C = euler3232C(Q) returns the direction cosine
matrix in terms of the 3-2-3 euler angles.
Input Q must be a 3x1 vector of euler angles.
"""
st1 = math.sin(q[0])
ct1 = math.cos(q[0])
st2 = math.sin(q[1])
ct2 = math.cos(q[1])
st3 = math.sin(q[2])
ct3 = math.cos(q[2])
C = np.identity(3)
C[0, 0] = ct1 * ct2 * ct3 - st1 * st3
C[0, 1] = ct2 * ct3 * st1 + ct1 * st3
C[0, 2] = -ct3 * st2
C[1, 0] = -ct3 * st1 - ct1 * ct2 * st3
C[1, 1] = ct1 * ct3 - ct2 * st1 * st3
C[1, 2] = st2 * st3
C[2, 0] = ct1 * st2
C[2, 1] = st1 * st2
C[2, 2] = ct2
return C
[docs]
def euler2122EP(e):
"""
euler2122EP(E)
Q = euler2122EP(E) translates the 212 euler angle
vector E into the euler parameter vector Q.
"""
e1 = e[0] / 2
e2 = e[1] / 2
e3 = e[2] / 2
q0 = math.cos(e2) * math.cos(e1 + e3)
q1 = math.sin(e2) * math.cos(-e1 + e3)
q2 = math.cos(e2) * math.sin(e1 + e3)
q3 = math.sin(e2) * math.sin(-e1 + e3)
return np.array([q0, q1, q2, q3])
[docs]
def euler2132EP(e):
"""
euler2132EP(E)
Q = euler2132EP(E) translates the 213 euler angle
vector E into the euler parameter vector Q.
"""
c1 = math.cos(e[0] / 2)
s1 = math.sin(e[0] / 2)
c2 = math.cos(e[1] / 2)
s2 = math.sin(e[1] / 2)
c3 = math.cos(e[2] / 2)
s3 = math.sin(e[2] / 2)
q0 = c1 * c2 * c3 + s1 * s2 * s3
q1 = c1 * s2 * c3 + s1 * c2 * s3
q2 = s1 * c2 * c3 - c1 * s2 * s3
q3 = c1 * c2 * s3 - s1 * s2 * c3
return np.array([q0, q1, q2, q3])
[docs]
def euler2312EP(e):
"""
euler2312EP(E)
Q = euler2312EP(E) translates the 231 euler angle
vector E into the euler parameter vector Q.
"""
c1 = math.cos(e[0] / 2)
s1 = math.sin(e[0] / 2)
c2 = math.cos(e[1] / 2)
s2 = math.sin(e[1] / 2)
c3 = math.cos(e[2] / 2)
s3 = math.sin(e[2] / 2)
q0 = c1 * c2 * c3 - s1 * s2 * s3
q1 = c1 * c2 * s3 + s1 * s2 * c3
q2 = s1 * c2 * c3 + c1 * s2 * s3
q3 = c1 * s2 * c3 - s1 * c2 * s3
return np.array([q0, q1, q2, q3])
[docs]
def euler2322EP(e):
"""
euler2322EP(E)
Q = euler2322EP(E) translates the 232 euler angle
vector E into the euler parameter vector Q.
"""
e1 = e[0] / 2
e2 = e[1] / 2
e3 = e[2] / 2
q0 = math.cos(e2) * math.cos(e1 + e3)
q1 = math.sin(e2) * math.sin(e1 - e3)
q2 = math.cos(e2) * math.sin(e1 + e3)
q3 = math.sin(e2) * math.cos(e1 - e3)
return np.array([q0, q1, q2, q3])
[docs]
def euler3122EP(e):
"""
euler3122EP(E)
Q = euler3122EP(E) translates the 312 euler angle
vector E into the euler parameter vector Q.
"""
c1 = math.cos(e[0] / 2)
s1 = math.sin(e[0] / 2)
c2 = math.cos(e[1] / 2)
s2 = math.sin(e[1] / 2)
c3 = math.cos(e[2] / 2)
s3 = math.sin(e[2] / 2)
q0 = c1 * c2 * c3 - s1 * s2 * s3
q1 = c1 * s2 * c3 - s1 * c2 * s3
q2 = c1 * c2 * s3 + s1 * s2 * c3
q3 = s1 * c2 * c3 + c1 * s2 * s3
return np.array([q0, q1, q2, q3])
[docs]
def euler3132EP(e):
"""
euler3132EP(E)
Q = euler3132EP(E) translates the 313 euler angle
vector E into the euler parameter vector Q.
"""
e1 = e[0] / 2
e2 = e[1] / 2
e3 = e[2] / 2
q0 = math.cos(e2) * math.cos(e1 + e3)
q1 = math.sin(e2) * math.cos(e1 - e3)
q2 = math.sin(e2) * math.sin(e1 - e3)
q3 = math.cos(e2) * math.sin(e1 + e3)
return np.array([q0, q1, q2, q3])
[docs]
def euler3212EP(e):
"""
euler3212EP(E)
Q = euler3212EP(E) translates the 321 euler angle
vector E into the euler parameter vector Q.
"""
c1 = math.cos(e[0] / 2)
s1 = math.sin(e[0] / 2)
c2 = math.cos(e[1] / 2)
s2 = math.sin(e[1] / 2)
c3 = math.cos(e[2] / 2)
s3 = math.sin(e[2] / 2)
q0 = c1 * c2 * c3 + s1 * s2 * s3
q1 = c1 * c2 * s3 - s1 * s2 * c3
q2 = c1 * s2 * c3 + s1 * c2 * s3
q3 = s1 * c2 * c3 - c1 * s2 * s3
return np.array([q0, q1, q2, q3])
[docs]
def euler3232EP(e):
"""
euler3232EP(E)
Q = euler3232EP(E) translates the 323 euler angle
vector E into the euler parameter vector Q.
"""
e1 = e[0] / 2
e2 = e[1] / 2
e3 = e[2] / 2
q0 = math.cos(e2) * math.cos(e1 + e3)
q1 = math.sin(e2) * math.sin(-e1 + e3)
q2 = math.sin(e2) * math.cos(-e1 + e3)
q3 = math.cos(e2) * math.sin(e1 + e3)
return np.array([q0, q1, q2, q3])
[docs]
def euler2122Gibbs(e):
"""
euler2122Gibbs(E)
Q = euler2122Gibbs(E) translates the (2-1-2) euler
angle vector E into the gibbs vector Q.
"""
return EP2Gibbs(euler2122EP(e))
[docs]
def euler2122MRP(e):
"""
euler2122MRP(E)
Q = euler2122MRP(E) translates the (2-1-2) euler
angle vector E into the MRP vector Q.
"""
return EP2MRP(euler2122EP(e))
[docs]
def euler2122PRV(e):
"""
euler2122PRV(E)
Q = euler2122PRV(E) translates the (2-1-2) euler
angle vector E into the principal rotation vector Q.
"""
return EP2PRV(euler2122EP(e))
[docs]
def euler2132Gibbs(e):
"""
euler2132Gibbs(E)
Q = euler2132Gibbs(E) translates the (2-1-3) euler
angle vector E into the gibbs vector Q.
"""
return EP2Gibbs(euler2132EP(e))
[docs]
def euler2132MRP(e):
"""
euler2132MRP(E)
Q = euler2132MRP(E) translates the (2-1-3) euler
angle vector E into the MRP vector Q.
"""
return EP2MRP(euler2132EP(e))
[docs]
def euler2132PRV(e):
"""
euler2132PRV(E)
Q = euler2132PRV(E) translates the (2-1-3) euler
angle vector E into the principal rotation vector Q.
"""
return EP2PRV(euler2132EP(e))
[docs]
def euler2312Gibbs(e):
"""
euler2312Gibbs(E)
Q = euler2312Gibbs(E) translates the (2-3-1) euler
angle vector E into the gibbs vector Q.
"""
return EP2Gibbs(euler2312EP(e))
[docs]
def euler2312MRP(e):
"""
euler2312MRP(E)
Q = euler2312MRP(E) translates the (2-3-1) euler
angle vector E into the MRP vector Q.
"""
return EP2MRP(euler2312EP(e))
[docs]
def euler2312PRV(e):
"""
euler2312PRV(E)
Q = euler2312PRV(E) translates the (2-3-1) euler
angle vector E into the principal rotation vector Q.
"""
return EP2PRV(euler2312EP(e))
[docs]
def euler2322Gibbs(e):
"""
euler2322Gibbs(E)
Q = euler2322Gibbs(E) translates the (2-3-2) euler
angle vector E into the gibbs vector Q.
"""
return EP2Gibbs(euler2322EP(e))
[docs]
def euler2322MRP(e):
"""
euler2322MRP(E)
Q = euler2322MRP(E) translates the (2-3-2) euler
angle vector E into the MRP vector Q.
"""
return EP2MRP(euler2322EP(e))
[docs]
def euler2322PRV(e):
"""
euler2322PRV(E)
Q = euler2322PRV(E) translates the (2-3-2) euler
angle vector E into the principal rotation vector Q.
"""
return EP2PRV(euler2322EP(e))
[docs]
def euler3122Gibbs(e):
"""
euler3122Gibbs(E)
Q = euler3122Gibbs(E) translates the (3-1-2) euler
angle vector E into the gibbs vector Q.
"""
return EP2Gibbs(euler3122EP(e))
[docs]
def euler3122MRP(e):
"""
euler3122MRP(E)
Q = euler3122MRP(E) translates the (3-1-2) euler
angle vector E into the MRP vector Q.
"""
return EP2MRP(euler3122EP(e))
[docs]
def euler3122PRV(e):
"""
euler3122PRV(E)
Q = euler3122PRV(E) translates the (3-1-2) euler
angle vector E into the principal rotation vector Q.
"""
return EP2PRV(euler3122EP(e))
[docs]
def euler3132Gibbs(e):
"""
euler3132Gibbs(E)
Q = euler3132Gibbs(E) translates the (3-1-3) euler
angle vector E into the gibbs vector Q.
"""
return EP2Gibbs(euler3132EP(e))
[docs]
def euler3132MRP(e):
"""
euler3132MRP(E)
Q = euler3132MRP(E) translates the (3-1-3) euler
angle vector E into the MRP vector Q.
"""
return EP2MRP(euler3132EP(e))
[docs]
def euler3132PRV(e):
"""
euler3132PRV(E)
Q = euler3132PRV(E) translates the (3-1-3) euler
angle vector E into the principal rotation vector Q.
"""
return EP2PRV(euler3132EP(e))
[docs]
def euler3212Gibbs(e):
"""
euler3212Gibbs(E)
Q = euler3212Gibbs(E) translates the (3-2-1) euler
angle vector E into the gibbs vector Q.
"""
return EP2Gibbs(euler3212EP(e))
[docs]
def euler3212MRP(e):
"""
euler3212MRP(E)
Q = euler3212MRP(E) translates the (3-2-1) euler
angle vector E into the MRP vector Q.
"""
return EP2MRP(euler3212EP(e))
[docs]
def euler3212PRV(e):
"""
euler3212PRV(E)
Q = euler3212PRV(E) translates the (3-2-1) euler
angle vector E into the principal rotation vector Q.
"""
return EP2PRV(euler3212EP(e))
[docs]
def euler3232Gibbs(e):
"""
euler3232Gibbs(E)
Q = euler3232Gibbs(E) translates the (3-2-3) euler
angle vector E into the gibbs vector Q.
"""
return EP2Gibbs(euler3232EP(e))
[docs]
def euler3232MRP(e):
"""
euler3232MRP(E)
Q = euler3232MRP(E) translates the (3-2-3) euler
angle vector E into the MRP vector Q.
"""
return EP2MRP(euler3232EP(e))
[docs]
def euler3232PRV(e):
"""
euler3232PRV(E)
Q = euler3232PRV(E) translates the (3-2-3) euler
angle vector Q1 into the principal rotation vector Q.
"""
return EP2PRV(euler3232EP(e))
def Mi(theta, i):
c = np.cos(theta)
s = np.sin(theta)
case = i
C = np.zeros((3, 3))
if case == 1:
C[0][0] = 1.
C[0][1] = 0.
C[0][2] = 0.
C[1][0] = 0.
C[1][1] = c
C[1][2] = s
C[2][0] = 0.
C[2][1] = -s
C[2][2] = c
elif case == 2:
C[0][0] = c
C[0][1] = 0.
C[0][2] = -s
C[1][0] = 0.
C[1][1] = 1.
C[1][2] = 0.
C[2][0] = s
C[2][1] = 0.
C[2][2] = c
elif case == 3:
C[0][0] = c
C[0][1] = s
C[0][2] = 0.
C[1][0] = -s
C[1][1] = c
C[1][2] = 0.
C[2][0] = 0.
C[2][1] = 0.
C[2][2] = 1.
else:
print('Mi() error: incorrect axis', i, 'selected')
return C
def v3Tilde(vector):
x1 = vector[0]
x2 = vector[1]
x3 = vector[2]
xTilde = [[0, -x3, x2]
,[x3, 0, -x1]
,[-x2, x1, 0]
]
return xTilde