#
# ISC License
#
# Copyright (c) 2016, Autonomous Vehicle Systems Lab, University of Colorado at Boulder
#
# Permission to use, copy, modify, and/or distribute this software for any
# purpose with or without fee is hereby granted, provided that the above
# copyright notice and this permission notice appear in all copies.
#
# THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
# WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
# MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
# ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
# WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
# ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
# OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
#
r"""
Overview
--------
This script sets up a formation flying scenario with two spacecraft. The deputy spacecraft keeps a given
mean orbital element difference based on Lyapunov control theory.
This script is found in the folder ``basilisk/examples`` and executed by using::
python3 scenarioFormationMeanOEFeedback.py
The simulation layout is shown in the following illustration. Two spacecraft are orbiting the earth at
close distance. Only :math:`J_2` gravity perturbation is included. Each spacecraft sends a :ref:`simpleNav`
output message of type :ref:`NavAttMsgPayload` message at a certain period
to :ref:`meanOEFeedback`, where mean orbital element difference is calculated and necessary control force is output to
extForceTorque module.
.. image:: /_images/static/test_scenarioFormationMeanOEFeedback.svg
:align: center
Illustration of Simulation Results
----------------------------------
::
show_plots = True, useClassicElem = True
In this case, target orbital element difference is set based on classical orbital element.
This resulting feedback control error is shown below.
.. image:: /_images/Scenarios/scenarioFormationMeanOEFeedback11.svg
:align: center
::
show_plots = True, useClassicElem = False
In this case, target orbital element difference is set based on equinoctial orbital element.
This resulting feedback control error is shown below.
.. image:: /_images/Scenarios/scenarioFormationMeanOEFeedback20.svg
:align: center
"""
import math
import os
import matplotlib.pyplot as plt
import numpy as np
from Basilisk import __path__
from Basilisk.fswAlgorithms import meanOEFeedback
from Basilisk.simulation import extForceTorque
from Basilisk.simulation import simpleNav
from Basilisk.simulation import spacecraft
from Basilisk.utilities import SimulationBaseClass
from Basilisk.utilities import macros
from Basilisk.utilities import orbitalMotion
from Basilisk.utilities import simIncludeGravBody
from Basilisk.utilities import unitTestSupport
from Basilisk.utilities import vizSupport
from Basilisk.architecture import astroConstants
bskPath = __path__[0]
fileName = os.path.basename(os.path.splitext(__file__)[0])
[docs]
def run(show_plots, useClassicElem, numOrbits):
"""
At the end of the python script you can specify the following example parameters.
Args:
show_plots (bool): Determines if the script should display plots
useClassicElem (bool): Determines if classic orbital element is used
numOrbits (float): Number of orbits the simulation should run
"""
scSim = SimulationBaseClass.SimBaseClass()
scSim.SetProgressBar(True)
# ----- dynamics ----- #
dynProcessName = "dynProcess"
dynTaskName = "dynTask"
dynProcess = scSim.CreateNewProcess(dynProcessName, 2)
dynTimeStep = macros.sec2nano(15.0)
dynProcess.addTask(scSim.CreateNewTask(dynTaskName, dynTimeStep))
# sc
scObject = spacecraft.Spacecraft()
scObject2 = spacecraft.Spacecraft()
scObject.ModelTag = "scObject"
scObject2.ModelTag = "scObject2"
I = [900., 0., 0.,
0., 800., 0.,
0., 0., 600.]
scObject.hub.mHub = 500.0
scObject.hub.r_BcB_B = [[0.0], [0.0], [0.0]]
scObject.hub.IHubPntBc_B = unitTestSupport.np2EigenMatrix3d(I)
scObject2.hub.mHub = 500.0
scObject2.hub.r_BcB_B = [[0.0], [0.0], [0.0]]
scObject2.hub.IHubPntBc_B = unitTestSupport.np2EigenMatrix3d(I)
scSim.AddModelToTask(dynTaskName, scObject, 2)
scSim.AddModelToTask(dynTaskName, scObject2, 2)
# grav
gravFactory = simIncludeGravBody.gravBodyFactory()
earth = gravFactory.createEarth()
earth.isCentralBody = True
mu = earth.mu
earth.useSphericalHarmonicsGravityModel(bskPath + '/supportData/LocalGravData/GGM03S.txt', 2)
gravFactory.addBodiesTo(scObject)
gravFactory.addBodiesTo(scObject2)
# extObj
extFTObject2 = extForceTorque.ExtForceTorque()
extFTObject2.ModelTag = "externalDisturbance2"
scObject2.addDynamicEffector(extFTObject2)
scSim.AddModelToTask(dynTaskName, extFTObject2, 3)
# simple nav
simpleNavObject = simpleNav.SimpleNav()
simpleNavObject2 = simpleNav.SimpleNav()
simpleNavObject.scStateInMsg.subscribeTo(scObject.scStateOutMsg)
simpleNavObject2.scStateInMsg.subscribeTo(scObject2.scStateOutMsg)
scSim.AddModelToTask(dynTaskName, simpleNavObject, 1)
scSim.AddModelToTask(dynTaskName, simpleNavObject2, 1)
# ----- fsw ----- #
fswProcessName = "fswProcess"
fswTaskName = "fswTask"
fswProcess = scSim.CreateNewProcess(fswProcessName, 1)
fswTimeStep = macros.sec2nano(15.0)
fswProcess.addTask(scSim.CreateNewTask(fswTaskName, fswTimeStep))
# meanOEFeedback
meanOEFeedbackObj = meanOEFeedback.meanOEFeedback()
meanOEFeedbackObj.ModelTag = "meanOEFeedback"
meanOEFeedbackObj.chiefTransInMsg.subscribeTo(simpleNavObject.transOutMsg)
meanOEFeedbackObj.deputyTransInMsg.subscribeTo(simpleNavObject2.transOutMsg)
extFTObject2.cmdForceInertialInMsg.subscribeTo(meanOEFeedbackObj.forceOutMsg)
meanOEFeedbackObj.K = [1e7, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 1e7, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 1e7, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 1e7, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 1e7, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 1e7]
meanOEFeedbackObj.targetDiffOeMean = [0.000, 0.000, 0.000, 0.0003, 0.0002, 0.0001]
if useClassicElem:
meanOEFeedbackObj.oeType = 0 # 0: classic
else:
meanOEFeedbackObj.oeType = 1 # 1: equinoctial
meanOEFeedbackObj.mu = astroConstants.MU_EARTH*1e9 # [m^3/s^2]
meanOEFeedbackObj.req = astroConstants.REQ_EARTH*1e3 # [m]
meanOEFeedbackObj.J2 = astroConstants.J2_EARTH # []
scSim.AddModelToTask(fswTaskName, meanOEFeedbackObj, 1)
# ----- Setup spacecraft initial states ----- #
oe = orbitalMotion.ClassicElements()
oe.a = 11000 * 1e3 # meters
oe.e = 0.4
oe.i = 10.0 * macros.D2R
oe.Omega = 00.0 * macros.D2R
oe.omega = 70.0 * macros.D2R
M = 0.0 * macros.D2R
E = orbitalMotion.M2E(M, oe.e)
oe.f = orbitalMotion.E2f(E, oe.e)
rN, vN = orbitalMotion.elem2rv(mu, oe)
orbitalMotion.rv2elem(mu, rN, vN)
scObject.hub.r_CN_NInit = rN # m
scObject.hub.v_CN_NInit = vN # m/s
oe2 = orbitalMotion.ClassicElements()
oe2.a = oe.a*(1 + 0.0001)
oe2.e = oe.e + 0.0002
oe2.i = oe.i - 0.0003
oe2.Omega = oe.Omega + 0.0004
oe2.omega = oe.omega + 0.0005
M2 = M + 0.0006
E2 = orbitalMotion.M2E(M2, oe.e)
oe2.f = orbitalMotion.E2f(E2, oe.e)
rN2, vN2 = orbitalMotion.elem2rv(mu, oe2)
scObject2.hub.r_CN_NInit = rN2 # m
scObject2.hub.v_CN_NInit = vN2 # m/s
# ----- log ----- #
orbit_period = 2*math.pi/math.sqrt(mu/oe.a**3)
simulationTime = orbit_period*numOrbits
simulationTime = macros.sec2nano(simulationTime)
numDataPoints = 1000
samplingTime = unitTestSupport.samplingTime(simulationTime, dynTimeStep, numDataPoints)
dataLog = scObject.scStateOutMsg.recorder(samplingTime)
dataLog2 = scObject2.scStateOutMsg.recorder(samplingTime)
scSim.AddModelToTask(dynTaskName, dataLog)
scSim.AddModelToTask(dynTaskName, dataLog2)
# if this scenario is to interface with the BSK Viz, uncomment the following lines
# to save the BSK data to a file, uncomment the saveFile line below
viz = vizSupport.enableUnityVisualization(scSim, dynTaskName, [scObject, scObject2]
# , saveFile=fileName
)
# ----- execute sim ----- #
scSim.InitializeSimulation()
scSim.ConfigureStopTime(simulationTime)
scSim.ExecuteSimulation()
# ----- pull ----- #
pos = dataLog.r_BN_N
vel = dataLog.v_BN_N
pos2 = dataLog2.r_BN_N
vel2 = dataLog2.v_BN_N
timeData = dataLog.times()*macros.NANO2SEC/orbit_period
# ----- plot ----- #
# classical oe (figure1)
plt.figure(1)
oed_cl = np.empty((len(pos[:, 0]), 6))
for i in range(0, len(pos[:, 0])):
# spacecraft 1 (chief)
oe_cl_osc = orbitalMotion.rv2elem(mu, pos[i], vel[i])
oe_cl_mean = orbitalMotion.ClassicElements()
orbitalMotion.clMeanOscMap(orbitalMotion.REQ_EARTH*1e3, orbitalMotion.J2_EARTH, oe_cl_osc, oe_cl_mean, -1)
# spacecraft 2 (deputy)
oe2_cl_osc = orbitalMotion.rv2elem(mu, pos2[i], vel2[i])
oe2_cl_mean = orbitalMotion.ClassicElements()
orbitalMotion.clMeanOscMap(orbitalMotion.REQ_EARTH*1e3, orbitalMotion.J2_EARTH, oe2_cl_osc, oe2_cl_mean, -1)
# calculate oed
oed_cl[i, 0] = (oe2_cl_mean.a - oe_cl_mean.a)/oe_cl_mean.a # delta a (normalized)
oed_cl[i, 1] = oe2_cl_mean.e - oe_cl_mean.e # delta e
oed_cl[i, 2] = oe2_cl_mean.i - oe_cl_mean.i # delta i
oed_cl[i, 3] = oe2_cl_mean.Omega - oe_cl_mean.Omega # delta Omega
oed_cl[i, 4] = oe2_cl_mean.omega - oe_cl_mean.omega # delta omega
E_tmp = orbitalMotion.f2E(oe_cl_mean.f, oe_cl_mean.e)
E2_tmp = orbitalMotion.f2E(oe2_cl_mean.f, oe2_cl_mean.e)
oed_cl[i, 5] = orbitalMotion.E2M(
E2_tmp, oe2_cl_mean.e) - orbitalMotion.E2M(E_tmp, oe_cl_mean.e) # delta M
for j in range(3, 6):
while(oed_cl[i, j] > math.pi):
oed_cl[i, j] = oed_cl[i, j] - 2*math.pi
while(oed_cl[i, j] < -math.pi):
oed_cl[i, j] = oed_cl[i, j] + 2*math.pi
plt.plot(timeData, oed_cl[:, 0], label="da")
plt.plot(timeData, oed_cl[:, 1], label="de")
plt.plot(timeData, oed_cl[:, 2], label="di")
plt.plot(timeData, oed_cl[:, 3], label="dOmega")
plt.plot(timeData, oed_cl[:, 4], label="domega")
plt.plot(timeData, oed_cl[:, 5], label="dM")
plt.legend()
plt.xlabel("time [orbit]")
plt.ylabel("mean orbital element difference")
figureList = {}
pltName = fileName + "1" + str(int(useClassicElem))
figureList[pltName] = plt.figure(1)
# equinoctial oe (figure2)
plt.figure(2)
oed_eq = np.empty((len(pos[:, 0]), 6))
for i in range(0, len(pos[:, 0])):
# spacecraft 1 (chief)
oe_cl_osc = orbitalMotion.rv2elem(mu, pos[i], vel[i])
oe_cl_mean = orbitalMotion.ClassicElements()
orbitalMotion.clMeanOscMap(orbitalMotion.REQ_EARTH*1e3, orbitalMotion.J2_EARTH, oe_cl_osc, oe_cl_mean, -1)
oe_eq_mean = orbitalMotion.EquinoctialElements()
orbitalMotion.clElem2eqElem(oe_cl_mean, oe_eq_mean)
# spacecraft 2 (deputy)
oe2_cl_osc = orbitalMotion.rv2elem(mu, pos2[i], vel2[i])
oe2_cl_mean = orbitalMotion.ClassicElements()
orbitalMotion.clMeanOscMap(orbitalMotion.REQ_EARTH*1e3, orbitalMotion.J2_EARTH, oe2_cl_osc, oe2_cl_mean, -1)
oe2_eq_mean = orbitalMotion.EquinoctialElements()
orbitalMotion.clElem2eqElem(oe2_cl_mean, oe2_eq_mean)
# calculate oed
oed_eq[i, 0] = (oe2_eq_mean.a - oe_eq_mean.a)/oe_eq_mean.a # delta a (normalized)
oed_eq[i, 1] = oe2_eq_mean.P1 - oe_eq_mean.P1 # delta P1
oed_eq[i, 2] = oe2_eq_mean.P2 - oe_eq_mean.P2 # delta P2
oed_eq[i, 3] = oe2_eq_mean.Q1 - oe_eq_mean.Q1 # delta Q1
oed_eq[i, 4] = oe2_eq_mean.Q2 - oe_eq_mean.Q2 # delta Q2
oed_eq[i, 5] = oe2_eq_mean.l - oe_eq_mean.l # delta l
while(oed_eq[i, 5] > math.pi):
oed_eq[i, 5] = oed_eq[i, 5] - 2*math.pi
while(oed_eq[i, 5] < -math.pi):
oed_eq[i, 5] = oed_eq[i, 5] + 2*math.pi
plt.plot(timeData, oed_eq[:, 0], label="da")
plt.plot(timeData, oed_eq[:, 1], label="dP1")
plt.plot(timeData, oed_eq[:, 2], label="dP2")
plt.plot(timeData, oed_eq[:, 3], label="dQ1")
plt.plot(timeData, oed_eq[:, 4], label="dQ2")
plt.plot(timeData, oed_eq[:, 5], label="dl")
plt.legend()
plt.xlabel("time [orbit]")
plt.ylabel("mean orbital element difference")
pltName = fileName + "2" + str(int(useClassicElem))
figureList[pltName] = plt.figure(2)
if(show_plots):
plt.show()
plt.close("all")
return pos, vel, pos2, vel2, numDataPoints, figureList
if __name__ == "__main__":
run(
True, # show_plots
True, # useClassicElem
40 # number of orbits
)