Source code for scenarioHaloOrbit


#  ISC License
#
#  Copyright (c) 2024, Autonomous Vehicle Systems Lab, University of Colorado at Boulder
#
#  Permission to use, copy, modify, and/or distribute this software for any
#  purpose with or without fee is hereby granted, provided that the above
#  copyright notice and this permission notice appear in all copies.
#
#  THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
#  WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
#  MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
#  ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
#  WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
#  ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
#  OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
#

r"""
Overview
--------

This script sets up a 3-DOF spacecraft that is operating near-Halo orbit at L2 Earth-Moon Lagrange points. The purpose
is to illustrate how to set up the spacecraft's initial conditions to create a near-Halo orbit and convert the barycenter focused
non-dimensional ICs to earth-centered inertial frame components.

The script is found in the folder ``basilisk/examples`` and executed by using::

    python3 scenarioHaloOrbit.py

For this simulation, the Earth is assumed stationary, and the Moon's trajectory is generated using SPICE. Refer to
:ref:`scenarioOrbitMultiBody` to learn how to create multiple gravity bodies and read a SPICE trajectory.

When the simulation completes, three plots are shown. The first plot shows the orbits of the Moon and spacecraft in
the Earth-centered inertial frame. The second and third plots show the motion of the spacecraft in a frame rotating
with the Moon. In the second plot, the y-axis represents the Moon's velocity direction, and in the third plot, the
y-axis represents the cross product of the Moon's position vector and velocity vector.

Illustration of Simulation Results
----------------------------------

The following images illustrate the simulation run results with the following settings:

::

    showPlots = True

.. image:: /_images/Scenarios/scenarioHaloOrbitFig1.svg
    :align: center

.. image:: /_images/Scenarios/scenarioHaloOrbitFig2.svg
    :align: center

.. image:: /_images/Scenarios/scenarioHaloOrbitFig3.svg
    :align: center


"""

#
# Basilisk Scenario Script and Integrated Test
#
# Purpose:  This scenario illustrates the near-Halo orbit of a spacecraft.
# Author:   Yumeka Nagano
# Creation Date:  Feb. 12, 2024
#

import os
from datetime import datetime

import matplotlib.pyplot as plt
import numpy as np
from Basilisk import __path__
from Basilisk.simulation import spacecraft
from Basilisk.topLevelModules import pyswice
from Basilisk.utilities import (SimulationBaseClass, macros, orbitalMotion,
                                simIncludeGravBody, unitTestSupport, vizSupport)
from Basilisk.utilities.pyswice_spk_utilities import spkRead

bskPath = __path__[0]
fileName = os.path.basename(os.path.splitext(__file__)[0])

[docs] def run(showPlots=True): """ Args: showPlots (bool): Determines if the script should display plots """ # Create simulation variable names simTaskName = "dynTask" simProcessName = "dynProcess" # Create a sim module as an empty container scSim = SimulationBaseClass.SimBaseClass() scSim.SetProgressBar(True) # Create the simulation process (dynamics) dynProcess = scSim.CreateNewProcess(simProcessName) # Add the dynamics task to the dynamics process and specify the integration update time timestep = 300 simulationTimeStep = macros.sec2nano(timestep) dynProcess.addTask(scSim.CreateNewTask(simTaskName, simulationTimeStep)) # Setup the spacecraft object scObject = spacecraft.Spacecraft() scObject.ModelTag = "HaloSat" # Add spacecraft object to the simulation process # Make this model a lower priority than the SPICE object task scSim.AddModelToTask(simTaskName, scObject, 0) # Setup gravity factory and gravity bodies # Include bodies as a list of SPICE names gravFactory = simIncludeGravBody.gravBodyFactory() gravBodies = gravFactory.createBodies('moon', 'earth') gravBodies['earth'].isCentralBody = True # Add gravity bodies to the spacecraft dynamics gravFactory.addBodiesTo(scObject) # Create default SPICE module, specify start date/time. timeInitString = "2022 August 31 15:00:00.0" bsk_path = __path__[0] spiceObject = gravFactory.createSpiceInterface(bsk_path + "/supportData/EphemerisData/", time=timeInitString, epochInMsg=True) spiceObject.zeroBase = 'earth' # Add SPICE object to the simulation task list scSim.AddModelToTask(simTaskName, spiceObject, 1) # Import SPICE ephemeris data into the python environment pyswice.furnsh_c(spiceObject.SPICEDataPath + 'de430.bsp') # solar system bodies pyswice.furnsh_c(spiceObject.SPICEDataPath + 'naif0012.tls') # leap second file pyswice.furnsh_c(spiceObject.SPICEDataPath + 'de-403-masses.tpc') # solar system masses pyswice.furnsh_c(spiceObject.SPICEDataPath + 'pck00010.tpc') # generic Planetary Constants Kernel # Set spacecraft ICs # Get initial moon data moonSpiceName = 'moon' moonInitialState = 1000 * spkRead(moonSpiceName, timeInitString, 'J2000', 'earth') moon_rN_init = moonInitialState[0:3] moon_vN_init = moonInitialState[3:6] moon = gravBodies['moon'] earth = gravBodies['earth'] oe = orbitalMotion.rv2elem(earth.mu, moon_rN_init, moon_vN_init) moon_a = oe.a # Direction Cosine Matrix (DCM) from earth centered inertial frame to earth-moon rotation frame DCMInit = np.array([moon_rN_init/np.linalg.norm(moon_rN_init),moon_vN_init/np.linalg.norm(moon_vN_init), np.cross(moon_rN_init, moon_vN_init) / np.linalg.norm(np.cross(moon_rN_init, moon_vN_init))]) # Set up non-dimensional parameters T_ND = np.sqrt(moon_a ** 3 / (earth.mu + moon.mu)) # non-dimensional time for one second mu_ND = moon.mu/(earth.mu + moon.mu) # non-dimensional mass # Set up initial conditions for the spacecraft x0 = 1.182212 * moon_a + moon_a * mu_ND z0 = 0.049 * moon_a dy0 = -0.167 * moon_a / T_ND X0 = np.array([[x0], [0], [z0]]) dX0 = np.array([[0], [np.linalg.norm(moon_vN_init) + dy0], [0]]) rN = np.dot(np.transpose(DCMInit), X0) vN = np.dot(np.transpose(DCMInit), dX0) scObject.hub.r_CN_NInit = rN scObject.hub.v_CN_NInit = vN # Set simulation time simulationTime = macros.day2nano(17.5) # Setup data logging numDataPoints = 1000 samplingTime = unitTestSupport.samplingTime(simulationTime, simulationTimeStep, numDataPoints) # Setup spacecraft data recorder scDataRec = scObject.scStateOutMsg.recorder(samplingTime) MoonDataRec = spiceObject.planetStateOutMsgs[0].recorder(samplingTime) scSim.AddModelToTask(simTaskName, scDataRec) scSim.AddModelToTask(simTaskName, MoonDataRec) if vizSupport.vizFound: viz = vizSupport.enableUnityVisualization(scSim, simTaskName, scObject, # saveFile=__file__ ) viz.settings.showCelestialBodyLabels = 1 viz.settings.mainCameraTarget = "earth" viz.settings.trueTrajectoryLinesOn = 4 viz.settings.truePathRotatingFrame = "earth moon" # Initialize simulation scSim.InitializeSimulation() # Execute simulation scSim.ConfigureStopTime(simulationTime) scSim.ExecuteSimulation() # Retrieve logged data posData = scDataRec.r_BN_N velData = scDataRec.v_BN_N timeData = scDataRec.times() moonPos = MoonDataRec.PositionVector moonVel = MoonDataRec.VelocityVector # Plot results np.set_printoptions(precision=16) plt.close("all") figureList = {} b = oe.a * np.sqrt(1 - oe.e * oe.e) # First plot: Draw orbit in inertial frame fig = plt.figure(1, figsize=tuple(np.array((1.0, b / oe.a)) * 4.75), dpi=100) plt.axis(np.array([-oe.rApoap, oe.rPeriap, -b, b]) / 1000 * 1.25) ax = fig.gca() ax.ticklabel_format(style='scientific', scilimits=[-5, 3]) # Draw 'cartoon' Earth ax.add_artist(plt.Circle((0, 0), 0.2e5, color='b')) # Plot spacecraft orbit data rDataSpacecraft = [] fDataSpacecraft = [] for ii in range(len(posData)): oeDataSpacecraft = orbitalMotion.rv2elem(earth.mu, posData[ii], velData[ii]) rDataSpacecraft.append(oeDataSpacecraft.rmag) fDataSpacecraft.append(oeDataSpacecraft.f + oeDataSpacecraft.omega - oe.omega) plt.plot(rDataSpacecraft * np.cos(fDataSpacecraft) / 1000, rDataSpacecraft * np.sin(fDataSpacecraft) / 1000, color='g', linewidth=3.0, label='Spacecraft') # Plot moon orbit data rDataMoon = [] fDataMoon = [] for ii in range(len(timeData)): oeDataMoon = orbitalMotion.rv2elem(earth.mu, moonPos[ii], moonVel[ii]) rDataMoon.append(oeDataMoon.rmag) fDataMoon.append(oeDataMoon.f + oeDataMoon.omega - oe.omega) plt.plot(rDataMoon * np.cos(fDataMoon) / 1000, rDataMoon * np.sin(fDataMoon) / 1000, color='0.5', linewidth=3.0, label='Moon') plt.xlabel(r'$i_e$ Coord. [km]') plt.ylabel(r'$i_p$ Coord. [km]') plt.grid() plt.legend() pltName = fileName + "Fig1" figureList[pltName] = plt.figure(1) # Second plot: Draw orbit in frame rotating with the Moon (the center is L2 point) # x axis is moon position vector direction and y axis is moon velocity vector direction fig = plt.figure(2, figsize=tuple(np.array((1.0, b / oe.a)) * 4.75), dpi=100) plt.axis(np.array([-1e5, 5e5, -3e5, 3e5]) * 1.25) ax = fig.gca() ax.ticklabel_format(style='scientific', scilimits=[-5, 3]) # Draw 'cartoon' Earth ax.add_artist(plt.Circle((0, 0), 0.2e5, color='b')) # Plot spacecraft orbit data rSpacecraft = np.zeros((len(posData), 3)) for ii in range(len(posData)): # Get Moon position and velocity moon_rN = moonPos[ii] moon_vN = moonVel[ii] # Direction Cosine Matrix (DCM) from earth centered inertial frame to earth-moon rotation frame rSpacecraftMag = np.linalg.norm(posData[ii]) rMoonMag = np.linalg.norm(moon_rN) DCM = [moon_rN / rMoonMag, moon_vN / np.linalg.norm(moon_vN), np.cross(moon_rN, moon_vN) / np.linalg.norm(np.cross(moon_rN, moon_vN))] # Spacecraft position in rotating frame rSpacecraft[ii,:] = np.dot(DCM, posData[ii]) plt.plot(rSpacecraft[:,0] / 1000, rSpacecraft[:,1] / 1000, color='g', linewidth=3.0, label='Spacecraft') plt.xlabel('Earth-Moon axis [km]') plt.ylabel('Moon Velocity axis [km]') plt.grid() plt.legend() pltName = fileName + "Fig2" figureList[pltName] = plt.figure(2) # Third plot: Draw orbit in frame rotating with the Moon (the center is L2 point) # x axis is moon position vector direction and y axis is the cross product direction of the moon position vector and # velocity vector fig = plt.figure(3, figsize=tuple(np.array((1.0, b / oe.a)) * 4.75), dpi=100) plt.axis(np.array([-1e5, 5e5, -3e5, 3e5]) * 1.25) ax = fig.gca() ax.ticklabel_format(style='scientific', scilimits=[-5, 3]) # Draw 'cartoon' Earth ax.add_artist(plt.Circle((0, 0), 0.2e5, color='b')) plt.plot(rSpacecraft[:, 0] / 1000, rSpacecraft[:, 2] / 1000, color='g', linewidth=3.0, label='Spacecraft') plt.xlabel('Earth-Moon axis [km]') plt.ylabel('Earth-Moon perpendicular axis [km]') plt.grid() plt.legend() pltName = fileName + "Fig3" figureList[pltName] = plt.figure(3) if showPlots: plt.show() plt.close("all") # Unload spice libraries gravFactory.unloadSpiceKernels() pyswice.unload_c(spiceObject.SPICEDataPath + 'de430.bsp') # solar system bodies pyswice.unload_c(spiceObject.SPICEDataPath + 'naif0012.tls') # leap second file pyswice.unload_c(spiceObject.SPICEDataPath + 'de-403-masses.tpc') # solar system masses pyswice.unload_c(spiceObject.SPICEDataPath + 'pck00010.tpc') # generic Planetary Constants Kernel return figureList
if __name__ == "__main__": run( True # Show plots )