Source code for scenario_CNNImages

#
#  ISC License
#
#  Copyright (c) 2016, Autonomous Vehicle Systems Lab, University of Colorado at Boulder
#
#  Permission to use, copy, modify, and/or distribute this software for any
#  purpose with or without fee is hereby granted, provided that the above
#  copyright notice and this permission notice appear in all copies.
#
#  THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
#  WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
#  MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
#  ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
#  WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
#  ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
#  OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
#
r"""
Overview
--------

This script is called by OpNavScenarios/CNN_ImageGen/OpNavMonteCarlo.py in order to generate images.

"""

# Get current file path
import inspect
import os
import subprocess
import sys

from Basilisk.utilities import RigidBodyKinematics as rbk

# Import utilities
from Basilisk.utilities import orbitalMotion, macros, unitTestSupport
from Basilisk.utilities.supportDataTools.dataFetcher import get_path, DataFile

filename = inspect.getframeinfo(inspect.currentframe()).filename
path = os.path.dirname(os.path.abspath(filename))

# Import master classes: simulation base class and scenario base class
sys.path.append(path + "/../..")
from BSK_OpNav import BSKSim, BSKScenario
import BSK_OpNavDynamics, BSK_OpNavFsw
import numpy as np

# Import plotting file for your scenario
sys.path.append(path + "/../../plottingOpNav")
import OpNav_Plotting as BSK_plt


# Create your own scenario child class
[docs] class scenario_OpNav(BSKSim): """Main Simulation Class""" def __init__(self): super(scenario_OpNav, self).__init__(BSKSim) self.fswRate = 0.5 self.dynRate = 0.5 self.set_DynModel(BSK_OpNavDynamics) self.set_FswModel(BSK_OpNavFsw) self.name = "scenario_opnav" self.filterUse = "bias" # "relOD" self.configure_initial_conditions() # set recorded message information self.msgRecList = {} self.retainedMessageName1 = "scMsg" self.retainedMessageName2 = "circlesMsg" self.var1 = "r_BN_N" self.var2 = "sigma_BN" self.var3 = "valid" def configure_initial_conditions(self): # Configure Dynamics initial conditions oe = orbitalMotion.ClassicElements() oe.a = 18000 * 1e3 # meters oe.e = 0.0 oe.i = 20 * macros.D2R oe.Omega = 25.0 * macros.D2R oe.omega = 190.0 * macros.D2R oe.f = 100.0 * macros.D2R # 90 good mu = self.get_DynModel().gravFactory.gravBodies["mars barycenter"].mu rN, vN = orbitalMotion.elem2rv(mu, oe) orbitalMotion.rv2elem(mu, rN, vN) bias = [0, 0, -2] MRP = [0, 0, 0] if self.filterUse == "relOD": self.get_FswModel().relativeOD.stateInit = rN.tolist() + vN.tolist() if self.filterUse == "bias": self.get_FswModel().pixelLineFilter.stateInit = ( rN.tolist() + vN.tolist() + bias ) # self.get_DynModel().scObject.hub.r_CN_NInit = rN # m - r_CN_N # self.get_DynModel().scObject.hub.v_CN_NInit = vN # m/s - v_CN_N self.get_DynModel().scObject.hub.sigma_BNInit = [ [MRP[0]], [MRP[1]], [MRP[2]], ] # sigma_BN_B self.get_DynModel().scObject.hub.omega_BN_BInit = [ [0.0], [0.0], [0.0], ] # rad/s - omega_BN_B self.get_DynModel().cameraMod.fieldOfView = np.deg2rad(55) def log_outputs(self): # Dynamics process outputs: log messages below if desired. FswModel = self.get_FswModel() DynModel = self.get_DynModel() # FSW process outputs samplingTime = self.get_FswModel().processTasksTimeStep self.msgRecList[self.retainedMessageName1] = ( DynModel.scObject.scStateOutMsg.recorder(samplingTime) ) self.AddModelToTask( DynModel.taskName, self.msgRecList[self.retainedMessageName1] ) self.msgRecList[self.retainedMessageName2] = FswModel.opnavCirclesMsg.recorder( samplingTime ) self.AddModelToTask( DynModel.taskName, self.msgRecList[self.retainedMessageName2] ) return def pull_outputs(self, showPlots): ## Spacecraft true states scStates = self.msgRecList[self.retainedMessageName1] position_N = unitTestSupport.addTimeColumn(scStates.times(), scStates.r_BN_N) sigma_BN = unitTestSupport.addTimeColumn(scStates.times(), scStates.sigma_BN) ## Image processing circleStates = self.scRecmsgRecList[self.retainedMessageName2] validCircle = unitTestSupport.addTimeColumn( circleStates.times(), circleStates.valid ) sigma_CB = self.get_DynModel().cameraMRP_CB sizeMM = self.get_DynModel().cameraSize sizeOfCam = self.get_DynModel().cameraRez focal = self.get_DynModel().cameraFocal # in m pixelSize = [] pixelSize.append(sizeMM[0] / sizeOfCam[0]) pixelSize.append(sizeMM[1] / sizeOfCam[1]) dcm_CB = rbk.MRP2C(sigma_CB) # Plot results BSK_plt.clear_all_plots() trueRhat_C = np.full([len(validCircle[:, 0]), 4], np.nan) trueCircles = np.full([len(validCircle[:, 0]), 4], np.nan) trueCircles[:, 0] = validCircle[:, 0] trueRhat_C[:, 0] = validCircle[:, 0] ModeIdx = 0 Rmars = 3396.19 * 1e3 for j in range(len(position_N[:, 0])): if position_N[j, 0] in validCircle[:, 0]: ModeIdx = j break for i in range(len(validCircle[:, 0])): if validCircle[i, 1] > 1e-5: trueRhat_C[i, 1:] = np.dot( np.dot(dcm_CB, rbk.MRP2C(sigma_BN[ModeIdx + i, 1:4])), position_N[ModeIdx + i, 1:4], ) / np.linalg.norm(position_N[ModeIdx + i, 1:4]) trueCircles[i, 3] = ( focal * np.tan( np.arcsin(Rmars / np.linalg.norm(position_N[ModeIdx + i, 1:4])) ) / pixelSize[0] ) trueRhat_C[i, 1:] *= focal / trueRhat_C[i, 3] trueCircles[i, 1] = ( trueRhat_C[i, 1] / pixelSize[0] + sizeOfCam[0] / 2 - 0.5 ) trueCircles[i, 2] = ( trueRhat_C[i, 2] / pixelSize[1] + sizeOfCam[1] / 2 - 0.5 ) return
def run(TheScenario, runLog): TheBskScenario = BSKScenario TheScenario.log_outputs() TheScenario.configure_initial_conditions() if not os.path.exists(runLog): os.makedirs(runLog) TheScenario.get_DynModel().cameraMod.fieldOfView = np.deg2rad(55) # in degrees TheScenario.get_DynModel().cameraMod.cameraIsOn = 1 TheScenario.get_DynModel().cameraMod.saveImages = 1 TheScenario.get_DynModel().cameraMod.saveDir = ( runLog.split("/")[-2] + "/" + runLog.split("/")[-1] + "/" ) TheScenario.get_DynModel().vizInterface.noDisplay = True # Modes: "None", "-directComm", "-noDisplay" # The following code spawns the Vizard application from python as a function of the mode selected above, and the platform. TheScenario.vizard = subprocess.Popen( [TheScenario.vizPath, "--args", "-noDisplay", "tcp://localhost:5556"], stdout=subprocess.DEVNULL, ) print("Vizard spawned with PID = " + str(TheScenario.vizard.pid)) # Configure FSW mode TheScenario.modeRequest = "imageGen" # Initialize simulation TheScenario.InitializeSimulation() # Configure run time and execute simulation simulationTime = macros.min2nano(100.0) TheScenario.ConfigureStopTime(simulationTime) print("Starting Execution") TheScenario.ExecuteSimulation() TheScenario.vizard.kill() spice = TheScenario.get_DynModel().spiceObject de430_path = get_path(DataFile.EphemerisData.de430) naif0012_path = get_path(DataFile.EphemerisData.naif0012) de403masses_path = get_path(DataFile.EphemerisData.de_403_masses) pck00010_path = get_path(DataFile.EphemerisData.pck00010) spice.unloadSpiceKernel(str(de430_path)) spice.unloadSpiceKernel(str(naif0012_path)) spice.unloadSpiceKernel(str(de403masses_path)) spice.unloadSpiceKernel(str(pck00010_path)) return if __name__ == "__main__": # Instantiate base simulation # Configure a scenario in the base simulation TheScenario = scenario_OpNav() run(TheScenario, os.path.abspath(os.path.dirname(__file__)) + "/cnn_MC_data")