Source code for scenario_LimbAttOD

#
#  ISC License
#
#  Copyright (c) 2016, Autonomous Vehicle Systems Lab, University of Colorado at Boulder
#
#  Permission to use, copy, modify, and/or distribute this software for any
#  purpose with or without fee is hereby granted, provided that the above
#  copyright notice and this permission notice appear in all copies.
#
#  THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
#  WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
#  MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
#  ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
#  WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
#  ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
#  OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
#
r"""
Overview
--------

This script is called by OpNavScenarios/OpNavMC/MonteCarlo.py in order to make MC data.

"""

# Get current file path
import inspect
import os
import subprocess
import sys

from Basilisk.utilities import RigidBodyKinematics as rbk

# Import utilities
from Basilisk.utilities import orbitalMotion, macros, unitTestSupport
from Basilisk.utilities.supportDataTools.dataFetcher import get_path, DataFile

filename = inspect.getframeinfo(inspect.currentframe()).filename
path = os.path.dirname(os.path.abspath(filename))

# Import master classes: simulation base class and scenario base class
sys.path.append(path + "/../..")
from BSK_OpNav import BSKSim
import BSK_OpNavDynamics, BSK_OpNavFsw
import numpy as np

# Import plotting file for your scenario
sys.path.append(path + "/../../plottingOpNav")
import OpNav_Plotting as BSK_plt


# Create your own scenario child class
[docs] class scenario_OpNav(BSKSim): """Main Simulation Class""" def __init__(self): super(scenario_OpNav, self).__init__(BSKSim) self.fswRate = 0.5 self.dynRate = 0.5 self.set_DynModel(BSK_OpNavDynamics) self.set_FswModel(BSK_OpNavFsw) self.name = "scenario_opnav" self.configure_initial_conditions() self.msgRecList = {} self.retainedMessageNameSc = "scMsg" self.retainedMessageNameFilt = "filtMsg" self.retainedMessageNameOpNav = "opnavMsg" self.retainedMessageNameLimb = "limbMsg" def configure_initial_conditions(self): # Configure Dynamics initial conditions oe = orbitalMotion.ClassicElements() oe.a = 18000 * 1e3 # meters oe.e = 0.6 oe.i = 10 * macros.D2R oe.Omega = 25.0 * macros.D2R oe.omega = 190.0 * macros.D2R oe.f = 80.0 * macros.D2R # 90 good mu = self.get_DynModel().gravFactory.gravBodies["mars barycenter"].mu rN, vN = orbitalMotion.elem2rv(mu, oe) orbitalMotion.rv2elem(mu, rN, vN) bias = [0, 0, -2] rError = np.array([10000.0, 10000.0, -10000]) vError = np.array([100, -10, 10]) MRP = [0, -0.3, 0] self.get_FswModel().relativeOD.stateInit = (rN + rError).tolist() + ( vN + vError ).tolist() self.get_DynModel().scObject.hub.r_CN_NInit = rN # m - r_CN_N self.get_DynModel().scObject.hub.v_CN_NInit = vN # m/s - v_CN_N self.get_DynModel().scObject.hub.sigma_BNInit = [ [MRP[0]], [MRP[1]], [MRP[2]], ] # sigma_BN_B self.get_DynModel().scObject.hub.omega_BN_BInit = [ [0.0], [0.0], [0.0], ] # rad/s - omega_BN_B qNoiseIn = np.identity(6) qNoiseIn[0:3, 0:3] = qNoiseIn[0:3, 0:3] * 1e-3 * 1e-3 qNoiseIn[3:6, 3:6] = qNoiseIn[3:6, 3:6] * 1e-4 * 1e-4 self.get_FswModel().relativeOD.qNoise = qNoiseIn.reshape(36).tolist() self.get_FswModel().horizonNav.noiseSF = 20 def log_outputs(self): # Dynamics process outputs: log messages below if desired. FswModel = self.get_FswModel() DynModel = self.get_DynModel() # FSW process outputs samplingTime = self.get_FswModel().processTasksTimeStep self.msgRecList[self.retainedMessageNameSc] = ( DynModel.scObject.scStateOutMsg.recorder(samplingTime) ) self.AddModelToTask( DynModel.taskName, self.msgRecList[self.retainedMessageNameSc] ) self.msgRecList[self.retainedMessageNameFilt] = ( FswModel.relativeOD.filtDataOutMsg.recorder(samplingTime) ) self.AddModelToTask( DynModel.taskName, self.msgRecList[self.retainedMessageNameFilt] ) self.msgRecList[self.retainedMessageNameOpNav] = FswModel.opnavMsg.recorder( samplingTime ) self.AddModelToTask( DynModel.taskName, self.msgRecList[self.retainedMessageNameOpNav] ) self.msgRecList[self.retainedMessageNameLimb] = ( FswModel.limbFinding.opnavLimbOutMsg.recorder(samplingTime) ) self.AddModelToTask( DynModel.taskName, self.msgRecList[self.retainedMessageNameLimb] ) return def pull_outputs(self, showPlots): # Dynamics process outputs: pull log messages below if any ## Spacecraft true states scRec = self.msgRecList[self.retainedMessageNameSc] position_N = unitTestSupport.addTimeColumn(scRec.times(), scRec.r_BN_N) velocity_N = unitTestSupport.addTimeColumn(scRec.times(), scRec.v_BN_N) ## Attitude sigma_BN = unitTestSupport.addTimeColumn(scRec.times(), scRec.sigma_BN) ## Image processing limbRec = self.msgRecList[self.retainedMessageNameLimb] limb = unitTestSupport.addTimeColumn(limbRec.times(), limbRec.limbPoints) numLimbPoints = unitTestSupport.addTimeColumn( limbRec.times(), limbRec.numLimbPoints ) validLimb = unitTestSupport.addTimeColumn(limbRec.times(), limbRec.valid) ## OpNav Out opNavRec = self.msgRecList[self.retainedMessageNameOpNav] measPos = unitTestSupport.addTimeColumn(opNavRec.times(), opNavRec.r_BN_N) r_C = unitTestSupport.addTimeColumn(opNavRec.times(), opNavRec.r_BN_C) measCovar = unitTestSupport.addTimeColumn(opNavRec.times(), opNavRec.covar_N) covar_C = unitTestSupport.addTimeColumn(opNavRec.times(), opNavRec.covar_C) NUM_STATES = 6 ## Navigation results filtRec = self.msgRecList[self.retainedMessageNameFilt] navState = unitTestSupport.addTimeColumn(filtRec.times(), filtRec.state) navCovar = unitTestSupport.addTimeColumn(filtRec.times(), filtRec.covar) navPostFits = unitTestSupport.addTimeColumn(filtRec.times(), filtRec.postFitRes) sigma_CB = self.get_DynModel().cameraMRP_CB sizeMM = self.get_DynModel().cameraSize sizeOfCam = self.get_DynModel().cameraRez focal = self.get_DynModel().cameraFocal # in m pixelSize = [] pixelSize.append(sizeMM[0] / sizeOfCam[0]) pixelSize.append(sizeMM[1] / sizeOfCam[1]) dcm_CB = rbk.MRP2C(sigma_CB) # Plot results BSK_plt.clear_all_plots() stateError = np.zeros([len(position_N[:, 0]), NUM_STATES + 1]) navCovarLong = np.full( [len(position_N[:, 0]), 1 + NUM_STATES * NUM_STATES], np.nan ) navCovarLong[:, 0] = np.copy(position_N[:, 0]) stateError[:, 0:4] = np.copy(position_N) stateError[:, 4:7] = np.copy(velocity_N[:, 1:]) measError = np.full([len(measPos[:, 0]), 4], np.nan) measError[:, 0] = measPos[:, 0] measError_C = np.full([len(measPos[:, 0]), 5], np.nan) measError_C[:, 0] = measPos[:, 0] trueRhat_C = np.full([len(numLimbPoints[:, 0]), 4], np.nan) trueR_C = np.full([len(numLimbPoints[:, 0]), 4], np.nan) trueCircles = np.full([len(numLimbPoints[:, 0]), 4], np.nan) trueCircles[:, 0] = numLimbPoints[:, 0] trueRhat_C[:, 0] = numLimbPoints[:, 0] trueR_C[:, 0] = numLimbPoints[:, 0] switchIdx = 0 Rmars = 3396.19 * 1e3 for j in range(len(stateError[:, 0])): if stateError[j, 0] in navState[:, 0]: stateError[j, 1:4] -= navState[j - switchIdx, 1:4] stateError[j, 4:] -= navState[j - switchIdx, 4:] else: stateError[j, 1:] = np.full(NUM_STATES, np.nan) switchIdx += 1 for i in range(len(numLimbPoints[:, 0])): if numLimbPoints[i, 1] > 1e-8: measError[i, 1:4] = position_N[i + switchIdx, 1:4] - measPos[i, 1:4] measError_C[i, 4] = np.linalg.norm( position_N[i + switchIdx, 1:4] ) - np.linalg.norm(r_C[i, 1:4]) trueR_C[i, 1:] = np.dot( np.dot(dcm_CB, rbk.MRP2C(sigma_BN[i + switchIdx, 1:4])), position_N[i + switchIdx, 1:4], ) trueRhat_C[i, 1:] = np.dot( np.dot(dcm_CB, rbk.MRP2C(sigma_BN[i + switchIdx, 1:4])), position_N[i + switchIdx, 1:4], ) / np.linalg.norm(position_N[i + switchIdx, 1:4]) trueCircles[i, 3] = ( focal * np.tan(np.arcsin(Rmars / np.linalg.norm(position_N[i, 1:4]))) / pixelSize[0] ) trueRhat_C[i, 1:] *= focal / trueRhat_C[i, 3] measError_C[i, 1:4] = trueRhat_C[i, 1:] - r_C[i, 1:4] / np.linalg.norm( r_C[i, 1:4] ) trueCircles[i, 1] = ( trueRhat_C[i, 1] / pixelSize[0] + sizeOfCam[0] / 2 - 0.5 ) trueCircles[i, 2] = ( trueRhat_C[i, 2] / pixelSize[1] + sizeOfCam[1] / 2 - 0.5 ) else: measCovar[i, 1:] = np.full(3 * 3, np.nan) covar_C[i, 1:] = np.full(3 * 3, np.nan) navCovarLong[switchIdx:, :] = np.copy(navCovar) timeData = position_N[:, 0] * macros.NANO2MIN BSK_plt.plot_TwoOrbits(position_N, measPos) BSK_plt.diff_vectors(trueR_C, r_C, validLimb, "Limb") BSK_plt.plot_limb(limb, numLimbPoints, validLimb, sizeOfCam) # BSK_plt.AnimatedScatter(sizeOfCam, circleCenters, circleRadii, validCircle) BSK_plt.plotStateCovarPlot(stateError, navCovarLong) # BSK_plt.imgProcVsExp(trueCircles, circleCenters, circleRadii, np.array(sizeOfCam)) BSK_plt.plotPostFitResiduals(navPostFits, measCovar) figureList = {} if showPlots: BSK_plt.show_all_plots() else: fileName = os.path.basename(os.path.splitext(__file__)[0]) figureNames = ["attitudeErrorNorm", "rwMotorTorque", "rateError", "rwSpeed"] figureList = BSK_plt.save_all_plots(fileName, figureNames) return figureList
def run(TheScenario): TheScenario.log_outputs() TheScenario.configure_initial_conditions() TheScenario.get_FswModel().imageProcessing.saveImages = 0 TheScenario.get_DynModel().vizInterface.liveStream = True vizard = subprocess.Popen( [TheScenario.vizPath, "--args", "-directComm", "tcp://localhost:5556"], stdout=subprocess.DEVNULL, ) print("Vizard spawned with PID = " + str(vizard.pid)) # Configure FSW mode TheScenario.modeRequest = "prepOpNav" # Initialize simulation TheScenario.InitializeSimulation() # Configure run time and execute simulation simulationTime = macros.min2nano(3.0) TheScenario.ConfigureStopTime(simulationTime) TheScenario.ExecuteSimulation() TheScenario.modeRequest = "OpNavAttODLimb" # TheBSKSim.get_DynModel().SetLocalConfigData(TheBSKSim, 60, True) simulationTime = macros.min2nano(100.0) TheScenario.ConfigureStopTime(simulationTime) TheScenario.ExecuteSimulation() vizard.kill() spice = TheScenario.get_DynModel().gravFactory.spiceObject de430_path = get_path(DataFile.EphemerisData.de430) naif0012_path = get_path(DataFile.EphemerisData.naif0012) de403masses_path = get_path(DataFile.EphemerisData.de_403_masses) pck00010_path = get_path(DataFile.EphemerisData.pck00010) spice.unloadSpiceKernel(str(de430_path)) spice.unloadSpiceKernel(str(naif0012_path)) spice.unloadSpiceKernel(str(de403masses_path)) spice.unloadSpiceKernel(str(pck00010_path)) return if __name__ == "__main__": # Instantiate base simulation # Configure a scenario in the base simulation TheScenario = scenario_OpNav() run(TheScenario)