Source code for test_coarseSunSensorFaults


# ISC License
#
# Copyright (c) 2016, Autonomous Vehicle Systems Lab, University of Colorado at Boulder
#
# Permission to use, copy, modify, and/or distribute this software for any
# purpose with or without fee is hereby granted, provided that the above
# copyright notice and this permission notice appear in all copies.
#
# THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
# WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
# MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
# ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
# WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
# ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
# OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.


#
# Coarse Sun Sensor Unit Test
#
# Purpose:  Test the proper function of the coarse sun sensor (css) module.
#           For basic functionality, results are compared to simple truth values calculated using np.cos().
#           For noise testing, noiseless truth values are subtracted from the output and the standard deviation is compared
#           to the input standard deviation.
#           For css constellation set up, two identical constellations are set up with different methods and compared to
#           each other
# Creation Date:  May. 31, 2017
#

import os

import numpy as np
import pytest
from Basilisk.architecture import messaging
from Basilisk.simulation import coarseSunSensor
from Basilisk.utilities import SimulationBaseClass
from Basilisk.utilities import macros
from Basilisk.utilities import orbitalMotion as om
from Basilisk.utilities import unitTestSupport

path = os.path.dirname(os.path.abspath(__file__))

# The following 'parametrize' function decorator provides the parameters and expected results for each
#   of the multiple test runs for this test.
[docs] @pytest.mark.parametrize( "cssFault, errTol", [ ("CSSFAULT_OFF", 0.01), ("CSSFAULT_STUCK_CURRENT", 0.01), ("CSSFAULT_STUCK_MAX", 0.01), ("CSSFAULT_STUCK_RAND", 0.05), ("CSSFAULT_RAND", 0.15), ]) # provide a unique test method name, starting with test_ def test_coarseSunSensor(cssFault, errTol): '''This function is called by the py.test environment.''' # each test method requires a single assert method to be called [testResults, testMessage] = run(cssFault, errTol) assert testResults < 1, testMessage __tracebackhide__ = True
def run(cssFault, errTol): # np.random.seed(10) testFailCount = 0 testMessages = [] testTaskName = "unitTestTask" testProcessName = "unitTestProcess" testTaskRate = macros.sec2nano(0.1) # Create a simulation container unitTestSim = SimulationBaseClass.SimBaseClass() # unitTestSim.RNGSeed = 10 # Ensure simulation is empty testProc = unitTestSim.CreateNewProcess(testProcessName) testProc.addTask(unitTestSim.CreateNewTask(testTaskName, testTaskRate)) # Input Message Setup # Creates inputs from sun, spacecraft, and eclipse so that those modules don't have to be included # Create dummy sun message sunPositionMsg = messaging.SpicePlanetStateMsgPayload() sunPositionMsg.PositionVector = [om.AU * 1000.0, 0.0, 0.0] sunMsg = messaging.SpicePlanetStateMsg().write(sunPositionMsg) # Create dummy spacecraft message satelliteStateMsg = messaging.SCStatesMsgPayload() satelliteStateMsg.r_BN_N = [0.0, 0.0, 0.0] angle = np.pi/16 satelliteStateMsg.sigma_BN = [0., 0., angle] scMsg = messaging.SCStatesMsg().write(satelliteStateMsg) # Calculate sun distance factor CSS = coarseSunSensor.CoarseSunSensor() CSS.fov = 80. * macros.D2R # half-angle field of view value CSS.scaleFactor = 2.0 CSS.nHat_B = np.array([1., 0., 0.]) CSS.sunInMsg.subscribeTo(sunMsg) CSS.stateInMsg.subscribeTo(scMsg) CSS.ModelTag = "CSS" CSS.RNGSeed = 123 unitTestSim.AddModelToTask(testTaskName, CSS) # log single CSS cssRecoder = CSS.cssDataOutMsg.recorder() unitTestSim.AddModelToTask(testTaskName, cssRecoder) # Truth Values if cssFault == "CSSFAULT_OFF": cssFaultValue = coarseSunSensor.CSSFAULT_OFF truthValue = 0.0 elif cssFault == "CSSFAULT_STUCK_CURRENT": cssFaultValue = coarseSunSensor.CSSFAULT_STUCK_CURRENT truthValue = 1.4280970791070948 elif cssFault == "CSSFAULT_STUCK_MAX": cssFaultValue = coarseSunSensor.CSSFAULT_STUCK_MAX truthValue = 2.0 elif cssFault == "CSSFAULT_STUCK_RAND": cssFaultValue = coarseSunSensor.CSSFAULT_STUCK_RAND truthValue = 3.8616668174815842 elif cssFault == "CSSFAULT_RAND": cssFaultValue = coarseSunSensor.CSSFAULT_RAND truthValue = 1.8197981843932824 else: NotImplementedError("Fault type specified does not exist.") unitTestSim.InitializeSimulation() # Execute the simulation for one time step unitTestSim.TotalSim.SingleStepProcesses() CSS.faultState = cssFaultValue for i in range(3): unitTestSim.TotalSim.SingleStepProcesses() cssOutput = cssRecoder.OutputData[-1] if cssFault == "CSSFAULT_OFF": if not truthValue == cssOutput: testFailCount += 1 elif not unitTestSupport.isDoubleEqualRelative(cssOutput, truthValue, errTol): testFailCount += 1 if testFailCount == 0: return [0, ''] else: return [testFailCount, ''] if __name__ == "__main__": run("CSSFAULT_STUCK_MAX")