#
# ISC License
#
# Copyright (c) 2023, Autonomous Vehicle Systems Lab, University of Colorado at Boulder
#
# Permission to use, copy, modify, and/or distribute this software for any
# purpose with or without fee is hereby granted, provided that the above
# copyright notice and this permission notice appear in all copies.
#
# THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
# WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
# MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
# ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
# WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
# ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
# OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
#
#
# Unit Test Script
# Module Name: prescribedTrans
# Author: Leah Kiner
# Creation Date: Jan 2, 2023
#
import inspect
import matplotlib.pyplot as plt
import numpy as np
import os
import pytest
from Basilisk.architecture import bskLogging
from Basilisk.architecture import messaging
from Basilisk.fswAlgorithms import prescribedTrans # import the module that is to be tested
from Basilisk.utilities import SimulationBaseClass
from Basilisk.utilities import macros
from Basilisk.utilities import unitTestSupport
filename = inspect.getframeinfo(inspect.currentframe()).filename
path = os.path.dirname(os.path.abspath(filename))
bskName = 'Basilisk'
splitPath = path.split(bskName)
# Vary the initial angle, reference angle, and maximum angular acceleration for pytest
[docs]
@pytest.mark.parametrize("scalarPosInit", [0, 2*np.pi/3])
@pytest.mark.parametrize("scalarPosRef", [0, 2*np.pi/3])
@pytest.mark.parametrize("scalarAccelMax", [0.0005, 0.002])
@pytest.mark.parametrize("accuracy", [1e-12])
# update "module" in this function name to reflect the module name
def test_prescribedTransTestFunction(show_plots, scalarPosInit, scalarPosRef, scalarAccelMax, accuracy):
r"""
**Validation Test Description**
This unit test ensures that the profiled translation for a secondary prescribed rigid body connected
to the spacecraft hub is properly computed for a series of initial and reference positions and maximum
accelerations. The final prescribed position and velocity magnitudes are compared with the reference values.
**Test Parameters**
Args:
scalarPosInit (float): [m] Initial scalar position of the F frame with respect to the M frame
scalarPosRef (float): [m] Reference scalar position of the F frame with respect to the M frame
scalarAccelMax (float): [m/s^2] Maximum acceleration for the translational maneuver
accuracy (float): absolute accuracy value used in the validation tests
**Description of Variables Being Tested**
This unit test ensures that the profiled translation is properly computed for a series of initial and
reference positions and maximum accelerations. The final prescribed position magnitude ``r_FM_M_Final`` and
velocity magnitude ``rPrime_FM_M_Final`` are compared with the reference values ``r_FM_M_Ref`` and
``rPrime_FM_M_Ref``, respectively.
"""
[testResults, testMessage] = prescribedTransTestFunction(show_plots, scalarPosInit, scalarPosRef, scalarAccelMax, accuracy)
assert testResults < 1, testMessage
[docs]
def prescribedTransTestFunction(show_plots, scalarPosInit, scalarPosRef, scalarAccelMax, accuracy):
"""Call this routine directly to run the unit test."""
testFailCount = 0
testMessages = []
unitTaskName = "unitTask"
unitProcessName = "TestProcess"
bskLogging.setDefaultLogLevel(bskLogging.BSK_WARNING)
# Create a sim module as an empty container
unitTestSim = SimulationBaseClass.SimBaseClass()
# Create test thread
testProcessRate = macros.sec2nano(0.1)
testProc = unitTestSim.CreateNewProcess(unitProcessName)
testProc.addTask(unitTestSim.CreateNewTask(unitTaskName, testProcessRate))
# Construct algorithm and associated C++ container
PrescribedTrans = prescribedTrans.prescribedTrans()
PrescribedTrans.ModelTag = "prescribedTrans"
# Add test module to runtime call list
unitTestSim.AddModelToTask(unitTaskName, PrescribedTrans)
# Initialize the test module configuration data
transAxis_M = np.array([0.5, 0.0, 0.5 * np.sqrt(3)])
PrescribedTrans.transAxis_M = transAxis_M
PrescribedTrans.scalarAccelMax = scalarAccelMax # [rad/s^2]
PrescribedTrans.r_FM_M = scalarPosInit * transAxis_M
PrescribedTrans.rPrime_FM_M = np.array([0.0, 0.0, 0.0])
PrescribedTrans.rPrimePrime_FM_M = np.array([0.0, 0.0, 0.0])
# Create input message
scalarVelRef = 0.0 # [m/s]
linearTranslationRigidBodyMessageData = messaging.LinearTranslationRigidBodyMsgPayload()
linearTranslationRigidBodyMessageData.rho = scalarPosRef
linearTranslationRigidBodyMessageData.rhoDot = scalarVelRef
linearTranslationRigidBodyMessage = messaging.LinearTranslationRigidBodyMsg().write(linearTranslationRigidBodyMessageData)
PrescribedTrans.linearTranslationRigidBodyInMsg.subscribeTo(linearTranslationRigidBodyMessage)
# Setup logging on the test module output message so that we get all the writes to it
dataLog = PrescribedTrans.prescribedTranslationOutMsg.recorder()
unitTestSim.AddModelToTask(unitTaskName, dataLog)
# Need to call the self-init and cross-init methods
unitTestSim.InitializeSimulation()
# Set the simulation time
simTime = np.sqrt(((0.5 * np.abs(scalarPosRef - scalarPosInit)) * 8) / scalarAccelMax) + 5
unitTestSim.ConfigureStopTime(macros.sec2nano(simTime))
# Begin the simulation time run set above
unitTestSim.ExecuteSimulation()
# Extract logged data
r_FM_M = dataLog.r_FM_M
rPrime_FM_M = dataLog.rPrime_FM_M
timespan = dataLog.times()
scalarVel_Final = np.linalg.norm(rPrime_FM_M[-1, :])
scalarPos_Final = np.linalg.norm(r_FM_M[-1, :])
# Plot r_FM_F
r_FM_M_Ref = scalarPosRef * transAxis_M
r_FM_M_1_Ref = np.ones(len(timespan)) * r_FM_M_Ref[0]
r_FM_M_2_Ref = np.ones(len(timespan)) * r_FM_M_Ref[1]
r_FM_M_3_Ref = np.ones(len(timespan)) * r_FM_M_Ref[2]
plt.figure()
plt.clf()
plt.plot(timespan * macros.NANO2SEC, r_FM_M[:, 0], label=r'$r_{1}$')
plt.plot(timespan * macros.NANO2SEC, r_FM_M[:, 1], label=r'$r_{2}$')
plt.plot(timespan * macros.NANO2SEC, r_FM_M[:, 2], label=r'$r_{3}$')
plt.plot(timespan * macros.NANO2SEC, r_FM_M_1_Ref, '--', label=r'$r_{1 Ref}$')
plt.plot(timespan * macros.NANO2SEC, r_FM_M_2_Ref, '--', label=r'$r_{2 Ref}$')
plt.plot(timespan * macros.NANO2SEC, r_FM_M_3_Ref, '--', label=r'$r_{3 Ref}$')
plt.title(r'${}^\mathcal{M} r_{\mathcal{F}/\mathcal{M}}$ Profiled Trajectory', fontsize=14)
plt.ylabel('(m)', fontsize=16)
plt.xlabel('Time (s)', fontsize=16)
plt.legend(loc='center left', prop={'size': 16})
# Plot rPrime_FM_F
plt.figure()
plt.clf()
plt.plot(timespan * macros.NANO2SEC, rPrime_FM_M[:, 0], label='$r\'_{1}$')
plt.plot(timespan * macros.NANO2SEC, rPrime_FM_M[:, 1], label='$r\'_{2}$')
plt.plot(timespan * macros.NANO2SEC, rPrime_FM_M[:, 2], label='$r\'_{3}$')
plt.title(r'${}^\mathcal{M} r\'_{\mathcal{F}/\mathcal{M}}$ Profiled Trajectory', fontsize=14)
plt.ylabel('(m/s)', fontsize=16)
plt.xlabel('Time (s)', fontsize=16)
plt.legend(loc='upper left', prop={'size': 16})
if show_plots:
plt.show()
plt.close("all")
# set the filtered output truth states
if not unitTestSupport.isDoubleEqual(scalarVel_Final, scalarVelRef, accuracy):
testFailCount += 1
testMessages.append("FAILED: " + PrescribedTrans.ModelTag + "scalarVel_Final and scalarVelRef do not match")
if not unitTestSupport.isDoubleEqual(scalarPos_Final, scalarPosRef, accuracy):
testFailCount += 1
testMessages.append("FAILED: " + PrescribedTrans.ModelTag + "scalarPos_Final and scalarPosRef do not match")
return [testFailCount, ''.join(testMessages)]
#
# This statement below ensures that the unitTestScript can be run as a
# stand-along python script
#
if __name__ == "__main__":
prescribedTransTestFunction(
True,
0.0, # scalarPosInit
0.25, # scalarPosRef
0.001, # scalarAccelMax
1e-12 # accuracy
)