Source code for test_simpleNav


# ISC License
#
# Copyright (c) 2016, Autonomous Vehicle Systems Lab, University of Colorado at Boulder
#
# Permission to use, copy, modify, and/or distribute this software for any
# purpose with or without fee is hereby granted, provided that the above
# copyright notice and this permission notice appear in all copies.
#
# THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
# WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
# MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
# ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
# WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
# ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
# OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.




import math
import os

import matplotlib.pyplot as plt
import numpy
from Basilisk.architecture import messaging
from Basilisk.simulation import simpleNav
from Basilisk.utilities import SimulationBaseClass
from Basilisk.utilities import unitTestSupport


def listNorm(inputList):
   normValue = 0.0
   for elem in inputList:
      normValue += elem*elem
   normValue = math.sqrt(normValue)
   i=0
   while i<len(inputList):
      inputList[i] = inputList[i]/normValue
      i += 1

# uncomment this line is this test is to be skipped in the global unit test run, adjust message as needed
# @pytest.mark.skipif(conditionstring)
# uncomment this line if this test has an expected failure, adjust message as needed
# @pytest.mark.xfail(True)

[docs] def test_unitSimpleNav(show_plots): """Module Unit Test""" # each test method requires a single assert method to be called [testResults, testMessage] = unitSimpleNav(show_plots) assert testResults < 1, testMessage
def unitSimpleNav(show_plots): path = os.path.dirname(os.path.abspath(__file__)) testFailCount = 0 # zero unit test result counter testMessages = [] # create empty array to store test log messages # Create a sim module as an empty container unitTaskName = "unitTask" # arbitrary name (don't change) unitProcessName = "TestProcess" # arbitrary name (don't change) # Create a sim module as an empty container unitTestSim = SimulationBaseClass.SimBaseClass() unitTestProc = unitTestSim.CreateNewProcess(unitProcessName) # create the task and specify the integration update time unitTestProc.addTask(unitTestSim.CreateNewTask(unitTaskName, int(1E8))) #Now initialize the modules that we are using. I got a little better as I went along sNavObject = simpleNav.SimpleNav() unitTestSim.AddModelToTask(unitTaskName, sNavObject) spiceMessage = messaging.SpicePlanetStateMsgPayload() stateMessage = messaging.SCStatesMsgPayload() vehPosition = [10000.0, 0.0, 0.0] sunPosition = [10000.0, 1000.0, 0.0] stateMessage.r_BN_N = vehPosition spiceMessage.PositionVector = sunPosition spiceMessage.PlanetName = "sun" # Inertial State output Message scStateMsg = messaging.SCStatesMsg().write(stateMessage) sNavObject.scStateInMsg.subscribeTo(scStateMsg) # Sun Planet Data Message sunStateMsg = messaging.SpicePlanetStateMsg().write(spiceMessage) sNavObject.sunStateInMsg.subscribeTo(sunStateMsg) sNavObject.ModelTag = "SimpleNavigation" posBound = numpy.array([1000.0] * 3) velBound = numpy.array([1.0] * 3) attBound = numpy.array([5E-3] * 3) rateBound = numpy.array([0.02] * 3) sunBound = numpy.array([5.0 * math.pi / 180.0] * 3) dvBound = numpy.array([0.053] * 3) posSigma = 5.0 velSigma = 0.035 attSigma = 1.0 / 360.0 * math.pi / 180.0 rateSigma = 0.05 * math.pi / 180.0 sunSigma = math.pi / 180.0 dvSigma = 0.1 * math.pi / 180.0 pMatrix = [[posSigma, 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], [0., posSigma, 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., posSigma, 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 0., velSigma, 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., velSigma, 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., velSigma, 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0., attSigma, 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0., 0., attSigma, 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0., attSigma, 0., 0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0., 0., rateSigma, 0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., rateSigma, 0., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., rateSigma, 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., sunSigma, 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., sunSigma, 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., sunSigma, 0., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., dvSigma, 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., dvSigma, 0.], [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., dvSigma], ] errorBounds = [[1000.], [1000.], [1000.], [1.], [1.], [1.], [0.005], [0.005], [0.005], [0.02], [0.02], [0.02], [5.0 * math.pi / 180.0], [5.0 * math.pi / 180.0], [5.0 * math.pi / 180.0], [0.053], [0.053], [0.053]] sNavObject.walkBounds = errorBounds sNavObject.PMatrix = pMatrix sNavObject.crossTrans = True sNavObject.crossAtt = False # setup logging dataAttLog = sNavObject.attOutMsg.recorder() dataTransLog = sNavObject.transOutMsg.recorder() unitTestSim.AddModelToTask(unitTaskName, dataAttLog) unitTestSim.AddModelToTask(unitTaskName, dataTransLog) unitTestSim.InitializeSimulation() unitTestSim.ConfigureStopTime(int(60 * 144.0 * 1E9)) unitTestSim.ExecuteSimulation() # pull simulation data posNav = dataTransLog.r_BN_N velNav = dataTransLog.v_BN_N attNav = dataAttLog.sigma_BN rateNav = dataAttLog.omega_BN_B dvNav = dataTransLog.vehAccumDV sunNav = dataAttLog.vehSunPntBdy sunHatPred = numpy.array(sunPosition)-numpy.array(vehPosition) listNorm(sunHatPred) countAllow = posNav.shape[0] * 0.3/100. posDiffCount = 0 velDiffCount = 0 attDiffCount = 0 rateDiffCount = 0 dvDiffCount = 0 sunDiffCount = 0 i=0 while i< posNav.shape[0]: posVecDiff = posNav[i,0:] - vehPosition velVecDiff = velNav[i,0:] attVecDiff = attNav[i,0:] rateVecDiff = rateNav[i,0:] dvVecDiff = dvNav[i,0:] sunVecDiff = math.acos(numpy.dot(sunNav[i, 0:], sunHatPred)) j=0 while j<3: if(abs(posVecDiff[j]) > posBound[j]): posDiffCount += 1 if(abs(velVecDiff[j]) > velBound[j]): velDiffCount += 1 if(abs(attVecDiff[j]) > attBound[j]): attDiffCount += 1 if(abs(rateVecDiff[j]) > rateBound[j]): rateDiffCount += 1 if(abs(dvVecDiff[j]) > dvBound[j]): dvDiffCount += 1 j+=1 if(abs(sunVecDiff) > 4.0*math.sqrt(3.0)*sunBound[0]): sunDiffCount += 1 i+= 1 errorCounts = [posDiffCount, velDiffCount, attDiffCount, rateDiffCount, dvDiffCount, sunDiffCount] for count in errorCounts: if count > countAllow: testFailCount += 1 testMessages.append("FAILED: Too many error counts -" + str(count)) sigmaThreshold = 0.8 posDiffCount = 0 velDiffCount = 0 attDiffCount = 0 rateDiffCount = 0 dvDiffCount = 0 sunDiffCount = 0 i=0 while i< posNav.shape[0]: posVecDiff = posNav[i,0:] - vehPosition velVecDiff = velNav[i,0:] attVecDiff = attNav[i,0:] rateVecDiff = rateNav[i,0:] dvVecDiff = dvNav[i,0:] sunVecDiff = math.acos(numpy.dot(sunNav[i, 0:], sunHatPred)) j=0 while j<3: if(abs(posVecDiff[j]) > posBound[j]*sigmaThreshold): posDiffCount += 1 if(abs(velVecDiff[j]) > velBound[j]*sigmaThreshold): velDiffCount += 1 if(abs(attVecDiff[j]) > attBound[j]*sigmaThreshold): attDiffCount += 1 if(abs(rateVecDiff[j]) > rateBound[j]*sigmaThreshold): rateDiffCount += 1 if(abs(dvVecDiff[j]) > dvBound[j]*sigmaThreshold): dvDiffCount += 1 j+=1 if(abs(sunVecDiff) > 4.0*math.sqrt(3.0)*sunBound[0]*sigmaThreshold): sunDiffCount += 1 i+= 1 errorCounts = [posDiffCount, velDiffCount, attDiffCount, rateDiffCount, dvDiffCount, sunDiffCount] for count in errorCounts: if count < 1: testFailCount += 1 testMessages.append("FAILED: Too few error counts -" + str(count)) plt.figure(1) plt.clf() plt.figure(1, figsize=(7, 5), dpi=80, facecolor='w', edgecolor='k') plt.plot(dataTransLog.times() * 1.0E-9, posNav[:,0], label='x-position') plt.plot(dataTransLog.times() * 1.0E-9, posNav[:,1], label='y-position') plt.plot(dataTransLog.times() * 1.0E-9, posNav[:,2], label='z-position') plt.legend(loc='upper left') plt.xlabel('Time (s)') plt.ylabel('Position (m)') unitTestSupport.writeFigureLaTeX('SimpleNavPos', 'Simple Navigation Position Signal', plt, r'height=0.4\textwidth, keepaspectratio', path) if show_plots: plt.show() plt.close('all') plt.figure(2) plt.clf() plt.figure(2, figsize=(7, 5), dpi=80, facecolor='w', edgecolor='k') plt.plot(dataAttLog.times() * 1.0E-9, attNav[:, 0], label='x-rotation') plt.plot(dataAttLog.times() * 1.0E-9, attNav[:, 1], label='y-rotation') plt.plot(dataAttLog.times() * 1.0E-9, attNav[:, 2], label='z-rotation') plt.legend(loc='upper left') plt.xlabel('Time (s)') plt.ylabel('Attitude (rad)') unitTestSupport.writeFigureLaTeX('SimpleNavAtt', 'Simple Navigation Att Signal', plt, r'height=0.4\textwidth, keepaspectratio', path) if show_plots: plt.show() plt.close('all') # Corner case usage pMatrixBad = [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]] # stateBoundsBad = [[0.], [0.], [0.], [0.], [0.], [0.], [0.], [0.], [0.], [0.], [0.], [0.], [0.], [0.], [0.], [0.], [0.], [0.]] stateBoundsBad = [[0.], [0.], [0.], [0.], [0.], [0.], [0.], [0.], [0.], [0.], [0.], [0.]] sNavObject.walkBounds = stateBoundsBad sNavObject.PMatrix = pMatrixBad # sNavObject.inputStateName = "random_name" # sNavObject.inputSunName = "weirdly_not_the_sun" unitTestSim.InitializeSimulation() unitTestSim.ConfigureStopTime(int(1E8)) unitTestSim.ExecuteSimulation() # print out success message if no error were found if testFailCount == 0: print("PASSED") assert testFailCount < 1, testMessages # each test method requires a single assert method to be called # this check below just makes sure no sub-test failures were found return [testFailCount, ''.join(testMessages)]
[docs] def test_gauss_markov_properties(): """ Test the statistical properties of the Gauss-Markov noise model in simpleNav. Tests: 1. Standard deviation matches input parameters 2. Mean converges to zero 3. Bounds are properly enforced """ [testResults, testMessage] = gauss_markov_test() assert testResults < 1, testMessage
def gauss_markov_test(): testFailCount = 0 testMessages = [] # Create a sim module as an empty container unitTestSim = SimulationBaseClass.SimBaseClass() unitProcessName = "TestProcess" unitTaskName = "unitTask" unitTestProc = unitTestSim.CreateNewProcess(unitProcessName) unitTestProc.addTask(unitTestSim.CreateNewTask(unitTaskName, int(1E8))) # Initialize the test module sNavObject = simpleNav.SimpleNav() unitTestSim.AddModelToTask(unitTaskName, sNavObject) # Create the spacecraft state message scStateMsg = messaging.SCStatesMsgPayload() scStateMsg.r_BN_N = [10000.0, 0.0, 0.0] # Match original test position scStateMsg.v_BN_N = [0.0, 0.0, 0.0] scStateMsg.sigma_BN = [0.0, 0.0, 0.0] scStateMsg.omega_BN_B = [0.0, 0.0, 0.0] # Create and setup sun state message spiceMessage = messaging.SpicePlanetStateMsgPayload() spiceMessage.PositionVector = [10000.0, 10000.0, 0.0] # Match documentation spiceMessage.PlanetName = "sun" # Setup required input messages inputMessageData = messaging.SCStatesMsg().write(scStateMsg) sunStateMsg = messaging.SpicePlanetStateMsg().write(spiceMessage) sNavObject.scStateInMsg.subscribeTo(inputMessageData) sNavObject.sunStateInMsg.subscribeTo(sunStateMsg) # Configure noise parameters (matching original test) posSigma = 5.0 velSigma = 0.035 attSigma = 1.0 / 360.0 * math.pi / 180.0 rateSigma = 0.05 * math.pi / 180.0 sunSigma = math.pi / 180.0 dvSigma = 0.1 * math.pi / 180.0 # Setup P matrix matching original test exactly pMatrix = [[posSigma, 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], [0., posSigma, 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., posSigma, 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 0., velSigma, 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., velSigma, 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., velSigma, 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0., attSigma, 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0., 0., attSigma, 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0., attSigma, 0., 0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0., 0., rateSigma, 0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., rateSigma, 0., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., rateSigma, 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., sunSigma, 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., sunSigma, 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., sunSigma, 0., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., dvSigma, 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., dvSigma, 0.], [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., dvSigma]] # Setup error bounds matching original test errorBounds = [[1000.], [1000.], [1000.], [1.], [1.], [1.], [0.005], [0.005], [0.005], [0.02], [0.02], [0.02], [5.0 * math.pi / 180.0], [5.0 * math.pi / 180.0], [5.0 * math.pi / 180.0], [0.053], [0.053], [0.053]] sNavObject.walkBounds = errorBounds sNavObject.PMatrix = pMatrix sNavObject.crossTrans = True sNavObject.crossAtt = False # Setup message logging dataTransLog = sNavObject.transOutMsg.recorder() unitTestSim.AddModelToTask(unitTaskName, dataTransLog) # Run simulation unitTestSim.InitializeSimulation() unitTestSim.ConfigureStopTime(int(60 * 144.0 * 1E9)) # Match original test duration unitTestSim.ExecuteSimulation() # Extract position data for analysis posNav = numpy.array(dataTransLog.r_BN_N) # Test 1: Statistical Checks countAllow = posNav.shape[0] * 0.3/100. # Match original test threshold posDiffCount = 0 i = 0 while i < posNav.shape[0]: posVecDiff = posNav[i,:] - scStateMsg.r_BN_N j = 0 while j < 3: if abs(posVecDiff[j]) > errorBounds[j][0]: posDiffCount += 1 j += 1 i += 1 if posDiffCount > countAllow: testFailCount += 1 testMessages.append(f"FAILED: Too many position errors ({posDiffCount} > {countAllow})") # Test 2: Error Bound Usage Check sigmaThreshold = 0.8 # Match original 80% threshold posDiffCount = 0 i = 0 while i < posNav.shape[0]: posVecDiff = posNav[i,:] - scStateMsg.r_BN_N j = 0 while j < 3: if abs(posVecDiff[j]) > errorBounds[j][0] * sigmaThreshold: posDiffCount += 1 j += 1 i += 1 if posDiffCount < 1: testFailCount += 1 testMessages.append("FAILED: Position errors too small") if testFailCount == 0: print("PASSED: Gauss-Markov noise tests successful") return [testFailCount, ''.join(testMessages)] # This statement below ensures that the unit test scrip can be run as a # stand-along python script if __name__ == "__main__": unitSimpleNav(True)