#
# ISC License
#
# Copyright (c) 2021, Autonomous Vehicle Systems Lab, University of Colorado Boulder
#
# Permission to use, copy, modify, and/or distribute this software for any
# purpose with or without fee is hereby granted, provided that the above
# copyright notice and this permission notice appear in all copies.
#
# THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
# WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
# MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
# ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
# WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
# ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
# OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
#
#
import numpy as np
from Basilisk.architecture import messaging
from Basilisk.fswAlgorithms import smallBodyNavEKF
from Basilisk.utilities import SimulationBaseClass
from Basilisk.utilities import macros, orbitalMotion
from Basilisk.utilities import unitTestSupport
from matplotlib import pyplot as plt
[docs]
def test_smallBodyNavEKF(show_plots):
r"""
**Validation Test Description**
This unit test checks that the filter converges to a constant state estimate under the presence of static measurements.
No thrusters are used, but a message for each is created and connected to avoid warnings.
**Test Parameters**
Args:
:param show_plots: flag if plots should be shown.
"""
[testResults, testMessage] = smallBodyNavEKFTestFunction(show_plots)
assert testResults < 1, testMessage
[docs]
def smallBodyNavEKFTestFunction(show_plots):
"""Test method"""
testFailCount = 0
testMessages = []
unitTaskName = "unitTask"
unitProcessName = "TestProcess"
unitTestSim = SimulationBaseClass.SimBaseClass()
testProcessRate = macros.sec2nano(0.5)
testProc = unitTestSim.CreateNewProcess(unitProcessName)
testProc.addTask(unitTestSim.CreateNewTask(unitTaskName, testProcessRate))
# setup module to be tested
module = smallBodyNavEKF.SmallBodyNavEKF()
module.ModelTag = "smallBodyNavEKFTag"
unitTestSim.AddModelToTask(unitTaskName, module)
# Set the filter parameters (sc area, mass, gravitational constants, etc.)
module.A_sc = 1. # Surface area of the spacecraft, m^2
module.M_sc = 100. # Mass of the spacecraft, kg
module.mu_ast = 5.2 # Gravitational constant of the asteroid
module.Q = (0.1*np.identity(12)).tolist() # Process Noise
module.R = (0.1*np.identity(12)).tolist() # Measurement Noise
bennu_radius = 1.355887692*orbitalMotion.AU*1000.0 # meters
bennu_velocity = np.sqrt(orbitalMotion.MU_SUN*(1000.**3)/bennu_radius) # m/s, assumes circular orbit
x_0 = [2010., 1510., 1010., 0., 2., 0., 0.14, 0., 0., 0., 0., 0.]
module.x_hat_k = x_0
module.P_k = (0.1*np.identity(12)).tolist()
# Configure blank module input messages
navTransInMsgData = messaging.NavTransMsgPayload()
navTransInMsgData.r_BN_N = [bennu_radius + 1000., 1000., 1000.]
navTransInMsgData.v_BN_N = [0., bennu_velocity + 1., 0.]
navTransInMsg = messaging.NavTransMsg().write(navTransInMsgData)
navAttInMsgData = messaging.NavAttMsgPayload()
navAttInMsgData.sigma_BN = [0.1, 0.0, 0.0]
navAttInMsgData.omega_BN_B = [0.0, 0.0, 0.0]
navAttInMsg = messaging.NavAttMsg().write(navAttInMsgData)
asteroidEphemerisInMsgData = messaging.EphemerisMsgPayload()
asteroidEphemerisInMsgData.r_BdyZero_N = [bennu_radius, 0., 0.]
asteroidEphemerisInMsgData.v_BdyZero_N = [0., bennu_velocity, 0.]
asteroidEphemerisInMsgData.sigma_BN = [0.1, 0.0, 0.0]
asteroidEphemerisInMsgData.omega_BN_B = [0.0, 0.0, 0.0]
asteroidEphemerisInMsg = messaging.EphemerisMsg().write(asteroidEphemerisInMsgData)
sunEphemerisInMsgData = messaging.EphemerisMsgPayload()
sunEphemerisInMsg = messaging.EphemerisMsg().write(sunEphemerisInMsgData)
THROutputInMsgData = messaging.THROutputMsgPayload()
THROutputInMsg = messaging.THROutputMsg().write(THROutputInMsgData)
cmdForceInMsgData = messaging.CmdForceBodyMsgPayload()
cmdForceInMsg = messaging.CmdForceBodyMsg().write(cmdForceInMsgData)
# subscribe input messages to module
module.navTransInMsg.subscribeTo(navTransInMsg)
module.navAttInMsg.subscribeTo(navAttInMsg)
module.asteroidEphemerisInMsg.subscribeTo(asteroidEphemerisInMsg)
module.sunEphemerisInMsg.subscribeTo(sunEphemerisInMsg)
module.addThrusterToFilter(THROutputInMsg)
module.cmdForceBodyInMsg.subscribeTo(cmdForceInMsg)
# setup output message recorder objects
navTransOutMsgRec = module.navTransOutMsg.recorder()
unitTestSim.AddModelToTask(unitTaskName, navTransOutMsgRec)
smallBodyNavOutMsgRec = module.smallBodyNavOutMsg.recorder()
unitTestSim.AddModelToTask(unitTaskName, smallBodyNavOutMsgRec)
smallBodyNavOutMsgRecC = module.smallBodyNavOutMsgC.recorder()
unitTestSim.AddModelToTask(unitTaskName, smallBodyNavOutMsgRecC)
asteroidEphemerisOutMsgRec = module.asteroidEphemerisOutMsg.recorder()
unitTestSim.AddModelToTask(unitTaskName, asteroidEphemerisOutMsgRec)
unitTestSim.InitializeSimulation()
unitTestSim.ConfigureStopTime(macros.sec2nano(10.))
unitTestSim.ExecuteSimulation()
x_hat = smallBodyNavOutMsgRec.state
x_hat_c_wrapped = smallBodyNavOutMsgRecC.state
true_x_hat = np.array([[1.33666664e+03, 1.18333330e+03, 1.00333330e+03, -4.77594532e-06,
1.33332617, -6.10976335e-06, 1.13333333e-01, 0.00000000,
0.00000000, 0.00000000, 0.00000000, 0.00000000]])
testFailCount, testMessages = unitTestSupport.compareArray(
true_x_hat, np.array([x_hat[-1,:]]), 0.1, "x_hat",
testFailCount, testMessages)
testFailCount, testMessages = unitTestSupport.compareArray(
true_x_hat, np.array([x_hat_c_wrapped[-1,:]]), 0.1, "x_hat_c_wrapped",
testFailCount, testMessages)
plt.close('all')
plt.figure(1, figsize=(7, 5), dpi=80, facecolor='w', edgecolor='k')
plt.ticklabel_format(useOffset=False)
plt.plot(navTransOutMsgRec.times() * 1.0E-9, x_hat[:,0], label='x-pos')
plt.plot(navTransOutMsgRec.times() * 1.0E-9, x_hat[:,1], label='y-pos')
plt.plot(navTransOutMsgRec.times() * 1.0E-9, x_hat[:,2], label='z-pos')
plt.legend(loc='upper left')
plt.xlabel('Time (s)')
plt.ylabel('r_BO_O (m)')
plt.title('Estimated Relative Spacecraft Position')
plt.figure(2, figsize=(7, 5), dpi=80, facecolor='w', edgecolor='k')
plt.plot(navTransOutMsgRec.times() * 1.0E-9, x_hat[:,3], label='x-vel')
plt.plot(navTransOutMsgRec.times() * 1.0E-9, x_hat[:,4], label='y-vel')
plt.plot(navTransOutMsgRec.times() * 1.0E-9, x_hat[:,5], label='z-vel')
plt.legend(loc='upper left')
plt.xlabel('Time (s)')
plt.ylabel('v_BO_O (m/s)')
plt.title('Estimated Spacecraft Velocity')
plt.figure(5, figsize=(7, 5), dpi=80, facecolor='w', edgecolor='k')
plt.plot(navTransOutMsgRec.times() * 1.0E-9, x_hat[:,6], label='s1')
plt.plot(navTransOutMsgRec.times() * 1.0E-9, x_hat[:,7], label='s2')
plt.plot(navTransOutMsgRec.times() * 1.0E-9, x_hat[:,8], label='s3')
plt.legend(loc='upper left')
plt.xlabel('Time (s)')
plt.ylabel('sigma_AN (rad)')
plt.title('Estimated Asteroid Attitude')
plt.figure(6, figsize=(7, 5), dpi=80, facecolor='w', edgecolor='k')
plt.plot(navTransOutMsgRec.times() * 1.0E-9, x_hat[:,9], label='omega1')
plt.plot(navTransOutMsgRec.times() * 1.0E-9, x_hat[:,10], label='omega2')
plt.plot(navTransOutMsgRec.times() * 1.0E-9, x_hat[:,11], label='omega3')
plt.legend(loc='upper left')
plt.xlabel('Time (s)')
plt.ylabel('omega_AN_A (rad/s)')
plt.title('Estimated Asteroid Rate')
if show_plots:
plt.show()
if testFailCount == 0:
print("PASSED: " + module.ModelTag)
else:
print(testMessages)
return [testFailCount, "".join(testMessages)]
if __name__ == "__main__":
test_smallBodyNavEKF(True)