Source code for test_star_tracker


# ISC License
#
# Copyright (c) 2016, Autonomous Vehicle Systems Lab, University of Colorado at Boulder
#
# Permission to use, copy, modify, and/or distribute this software for any
# purpose with or without fee is hereby granted, provided that the above
# copyright notice and this permission notice appear in all copies.
#
# THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
# WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
# MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
# ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
# WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
# ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
# OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.


#
#   Integrated Unit Test Script
#   Purpose:  Run a test of the star tracker module
#   Author:  John Alcorn
#   Creation Date:  October 12, 2016
#

import numpy as np
import pytest
from Basilisk.architecture import messaging
from Basilisk.simulation import starTracker
from Basilisk.utilities import RigidBodyKinematics as rbk
from Basilisk.utilities import SimulationBaseClass
from Basilisk.utilities import macros
from Basilisk.utilities import unitTestSupport  # general support file with common unit test functions


# methods
def listStack(vec,simStopTime,unitProcRate):
    # returns a list duplicated the number of times needed to be consistent with module output
    return [vec] * int(simStopTime/(float(unitProcRate)/float(macros.sec2nano(1))))

def setRandomWalk(self, senNoiseStd = 0.0, errorBounds = [[1e6],[1e6],[1e6]]):
    # sets the module random walk variables
    PMatrix = [[senNoiseStd, 0., 0.], [0., senNoiseStd, 0.], [0., 0., senNoiseStd]]
    self.PMatrix = PMatrix
    self.walkBounds = errorBounds

[docs] def safe_EP2PRV(quaternion): """Safely convert from Euler Parameters to Principal Rotation Vector""" eps = 1e-12 # Check if quaternion represents identity rotation (no rotation) if np.allclose(quaternion, [1, 0, 0, 0], atol=eps): return np.array([0, 0, 0]) # Ensure quaternion is normalized quaternion = quaternion / np.linalg.norm(quaternion) # Calculate rotation angle cos_phi_2 = quaternion[0] sin_phi_2 = np.sqrt(1 - cos_phi_2 * cos_phi_2) # Handle small rotation case if sin_phi_2 < eps: # For very small rotations, return scaled vector part return 2 * quaternion[1:4] # Normal case - calculate PRV phi = 2 * np.arctan2(sin_phi_2, cos_phi_2) e = quaternion[1:4] / sin_phi_2 return phi * e
# uncomment this line is this test is to be skipped in the global unit test run, adjust message as needed # @pytest.mark.skipif(conditionstring) # uncomment this line if this test has an expected failure, adjust message as needed # The following 'parametrize' function decorator provides the parameters and expected results for each # of the multiple test runs for this test.
[docs] @pytest.mark.parametrize("useFlag, testCase", [ (False,'basic'), (False,'noise'), (False,'walk bounds') ]) # provide a unique test method name, starting with test_ def test_unitSimStarTracker(show_plots, useFlag, testCase): """Module Unit Test""" # each test method requires a single assert method to be called [testResults, testMessage] = unitSimStarTracker(show_plots, useFlag, testCase) assert testResults < 1, testMessage
def unitSimStarTracker(show_plots, useFlag, testCase): testFail = False testFailCount = 0 # zero unit test result counter testMessages = [] # create empty array to store test log messages unitTaskName = "unitTask" # arbitrary name (don't change) unitProcName = "TestProcess" # arbitrary name (don't change) # initialize SimulationBaseClass unitSim = SimulationBaseClass.SimBaseClass() # create the task and specify the integration update time unitProcRate = macros.sec2nano(0.1) unitProcRate_s = macros.NANO2SEC*unitProcRate unitProc = unitSim.CreateNewProcess(unitProcName) unitProc.addTask(unitSim.CreateNewTask(unitTaskName, unitProcRate)) # configure module StarTracker = starTracker.StarTracker() StarTracker.ModelTag = "StarTracker" setRandomWalk(StarTracker) # configure module input message OutputStateData = messaging.SCStatesMsgPayload() OutputStateData.r_BN_N = [0,0,0] OutputStateData.v_BN_N = [0,0,0] OutputStateData.sigma_BN = [0,0,0] OutputStateData.omega_BN_B = [0,0,0] OutputStateData.TotalAccumDVBdy = [0,0,0] OutputStateData.MRPSwitchCount = 0 trueVector = dict() print(testCase) if testCase == 'basic': # this test verifies basic input and output simStopTime = 0.5 sigma = np.array([-0.390614710591786, -0.503642740963740, 0.462959869561285]) OutputStateData.sigma_BN = sigma trueVector['qInrtl2Case'] = listStack(rbk.MRP2EP(sigma),simStopTime,unitProcRate) trueVector['timeTag'] = np.arange(0,0+simStopTime*1E9,unitProcRate_s*1E9) elif testCase == 'noise': simStopTime = 10.0 noiseStd = 0.005 walkBound = 0.0075 # Adjust noise for time step dt = unitProcRate_s adjustedNoiseStd = noiseStd # Remove sqrt(dt) scaling since it's handled internally # Set up noise parameters setRandomWalk(StarTracker, adjustedNoiseStd, [[walkBound]]*3) # Set initial state sigma = np.array([0.0, 0.0, 0.0]) OutputStateData.sigma_BN = sigma # Set expected values expected_std = noiseStd # Expect direct noise level trueVector['qInrtl2Case'] = [expected_std] * 3 elif testCase == 'walk bounds': # this test checks the walk bounds of random walk simStopTime = 1000. noiseStd = 0.01 walkBound = 0.1 setRandomWalk(StarTracker, noiseStd, [[walkBound],[walkBound],[walkBound]]) sigma = np.array([0,0,0]) OutputStateData.sigma_BN = sigma trueVector['qInrtl2Case'] = [walkBound + noiseStd*3] * 3 trueVector['timeTag'] = np.arange(0,0+simStopTime*1E9,unitProcRate_s*1E9) else: raise Exception('invalid test case') # add module to the task unitSim.AddModelToTask(unitTaskName, StarTracker) # log module output message dataLog = StarTracker.sensorOutMsg.recorder() unitSim.AddModelToTask(unitTaskName, dataLog) # configure spacecraft state message scMsg = messaging.SCStatesMsg().write(OutputStateData) StarTracker.scStateInMsg.subscribeTo(scMsg) unitSim.InitializeSimulation() unitSim.ConfigureStopTime(macros.sec2nano(simStopTime)) unitSim.ExecuteSimulation() # pull message log data and assemble into dict moduleOutput = dataLog.qInrtl2Case # convert quaternion output to prv moduleOutput2 = np.zeros([int(simStopTime/unitProcRate_s)+1, 3]) for i in range(0, int(simStopTime/unitProcRate_s)+1): moduleOutput2[i] = safe_EP2PRV(moduleOutput[i]) if not 'accuracy' in vars(): accuracy = 1e-6 if testCase == 'noise': for i in range(0,3): mean_val = np.abs(np.mean(moduleOutput2[:,i])) std_val = np.abs(np.std(moduleOutput2[:,i])) expected_std = trueVector['qInrtl2Case'][i] # Error thresholds must incorporate room for random walk. mean_threshold = 0.02 std_threshold = 0.25 if mean_val > mean_threshold or np.abs(std_val - expected_std)/expected_std > std_threshold: testFail = True testMessages.append(f"Axis {i} failed: mean={mean_val:.6f}, std={std_val:.6f}") break elif testCase == 'walk bounds': for i in range(0,3): print(np.max(np.abs(np.asarray(moduleOutput2[i])))) if np.max(np.abs(np.asarray(moduleOutput2[i]))) > trueVector['qInrtl2Case'][i]: testFail = True break else: for i in range(0,len(trueVector['qInrtl2Case'])): if not unitTestSupport.isArrayEqual(moduleOutput[i], trueVector['qInrtl2Case'][i], 3, accuracy): testFail = True break if testFail: testFailCount += 1 testMessages.append("FAILED: " + StarTracker.ModelTag + " Module failed unit test") np.set_printoptions(precision=16) # print out success message if no error were found if testFailCount == 0: print("PASSED ") else: print(testMessages) # each test method requires a single assert method to be called # this check below just makes sure no sub-test failures were found return [testFailCount, ''.join(testMessages)] # This statement below ensures that the unit test script can be run as a # stand-along python script if __name__ == "__main__": test_unitSimStarTracker( False, # show_plots False, # useFlag 'walk bounds' # testCase )