Source code for test_tempMeasurement

#
#  ISC License
#
#  Copyright (c) 2023, Autonomous Vehicle Systems Lab, University of Colorado Boulder
#
#  Permission to use, copy, modify, and/or distribute this software for any
#  purpose with or without fee is hereby granted, provided that the above
#  copyright notice and this permission notice appear in all copies.
#
#  THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
#  WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
#  MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
#  ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
#  WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
#  ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
#  OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
#
#

#
# Thermal Sensor Faults Test
#
# Purpose:  Test the proper function of the faulty behaviors of the tempMeasurement module.
#           Results are compared to simple truth values.
#           To test spiking, percent of spike values compared with expected.
# Creation Date:  Feb. 9, 2023
#

import os

import numpy as np
import pytest
from Basilisk.architecture import messaging
from Basilisk.architecture import astroConstants
from Basilisk.simulation import sensorThermal, tempMeasurement
from Basilisk.utilities import SimulationBaseClass
from Basilisk.utilities import macros
from Basilisk.utilities import unitTestSupport

path = os.path.dirname(os.path.abspath(__file__))

# The following 'parametrize' function decorator provides the parameters and expected results for each
#   of the multiple test runs for this test.
# Need RNGSeed 464374481
[docs] @pytest.mark.parametrize( "tempFault", [ "TEMP_FAULT_NOMINAL", "TEMP_FAULT_STUCK_CURRENT", "TEMP_FAULT_STUCK_VALUE", "TEMP_FAULT_SPIKING", "BIASED", "GAUSS_MARKOV" ]) # provide a unique test method name, starting with test_ def test_sensorThermalFault(tempFault): '''This function is called by the py.test environment.''' # each test method requires a single assert method to be called [testResults, testMessage] = run(tempFault) assert testResults < 1, testMessage __tracebackhide__ = True
def run(tempFault): testFailCount = 0 # zero unit test result counter testMessages = [] # create empty list to store test log messages # Create simulation variable names unitTaskName = "unitTask" # arbitrary name (don't change) unitProcessName = "TestProcess" # arbitrary name (don't change) # Create a sim module as an empty container unitTestSim = SimulationBaseClass.SimBaseClass() # set the simulation time variable used later on simulationTime = macros.sec2nano(100.) # # create the simulation process # testProcessRate = macros.sec2nano(1.0) # update process rate update time testProc = unitTestSim.CreateNewProcess(unitProcessName) testProc.addTask(unitTestSim.CreateNewTask(unitTaskName, testProcessRate)) # # set up the simulation tasks/objects # # set device status message sensorStatusMsgPayload = messaging.DeviceStatusMsgPayload() sensorStatusMsgPayload.deviceStatus = 1 sensorStatusMsg = messaging.DeviceStatusMsg().write(sensorStatusMsgPayload) # set the spacecraft message scStateMsgPayload = messaging.SCStatesMsgPayload() scStateMsgPayload.r_BN_N = [6378*1000., 0., 0.] scStateMsgPayload.sigma_BN = [0., 0., 0.] scStateMsg = messaging.SCStatesMsg().write(scStateMsgPayload) # set the sun message sunMsgPayload = messaging.SpicePlanetStateMsgPayload() sunMsgPayload.PositionVector = [astroConstants.AU*1000., 0., 0.] sunMsg = messaging.SpicePlanetStateMsg().write(sunMsgPayload) # # set up the truth value temperature modeling # sensorThermalModel = sensorThermal.SensorThermal() sensorThermalModel.ModelTag = 'sensorThermalModel' sensorThermalModel.nHat_B = [0, 0, 1] sensorThermalModel.sensorArea = 1.0 # m^2 sensorThermalModel.sensorAbsorptivity = 0.25 sensorThermalModel.sensorEmissivity = 0.34 sensorThermalModel.sensorMass = 2.0 # kg sensorThermalModel.sensorSpecificHeat = 890 sensorThermalModel.sensorPowerDraw = 30.0 # W sensorThermalModel.T_0 = 0 # [ÂșC] sensorThermalModel.sunInMsg.subscribeTo(sunMsg) sensorThermalModel.stateInMsg.subscribeTo(scStateMsg) sensorThermalModel.sensorStatusInMsg.subscribeTo(sensorStatusMsg) unitTestSim.AddModelToTask(unitTaskName, sensorThermalModel) # # set up the tempMeasurement module # tempMeasurementModel = tempMeasurement.TempMeasurement() tempMeasurementModel.tempInMsg.subscribeTo(sensorThermalModel.temperatureOutMsg) unitTestSim.AddModelToTask(unitTaskName, tempMeasurementModel) # # log data # # log the RW temperature tempLog = tempMeasurementModel.tempOutMsg.recorder() unitTestSim.AddModelToTask(unitTaskName, tempLog) # # initialize Simulation # # Truth Values if tempFault == "TEMP_FAULT_NOMINAL": truthValue = -4.251289338192501 unitTestSim.InitializeSimulation() unitTestSim.ConfigureStopTime(simulationTime) unitTestSim.ExecuteSimulation() elif tempFault == "TEMP_FAULT_STUCK_CURRENT": truthValue = -2.1722164230619447 unitTestSim.InitializeSimulation() unitTestSim.ConfigureStopTime(round(simulationTime/2.0)) unitTestSim.ExecuteSimulation() tempMeasurementModel.faultState = tempMeasurement.TEMP_FAULT_STUCK_CURRENT unitTestSim.ConfigureStopTime(simulationTime) unitTestSim.ExecuteSimulation() elif tempFault == "TEMP_FAULT_STUCK_VALUE": truthValue = 10.0 tempMeasurementModel.stuckValue = 10.0 unitTestSim.InitializeSimulation() unitTestSim.ConfigureStopTime(round(simulationTime/2.0)) unitTestSim.ExecuteSimulation() tempMeasurementModel.faultState = tempMeasurement.TEMP_FAULT_STUCK_VALUE unitTestSim.ConfigureStopTime(simulationTime) unitTestSim.ExecuteSimulation() elif tempFault == "TEMP_FAULT_SPIKING": tempMeasurementModel.faultState = tempMeasurement.TEMP_FAULT_SPIKING truthValue = 0.1 unitTestSim.InitializeSimulation() unitTestSim.ConfigureStopTime(simulationTime) unitTestSim.ExecuteSimulation() nominals = np.array([ 0., -0.04439869, -0.08875756, -0.13307667, -0.17735608, -0.22159584, -0.265796, -0.30995662, -0.35407775, -0.39815946, -0.44220178, -0.48620479, -0.53016852, -0.57409304, -0.6179784, -0.66182465, -0.70563184, -0.74940004, -0.79312929, -0.83681965, -0.88047117, -0.9240839, -0.9676579, -1.01119321, -1.0546899, -1.09814802, -1.14156761, -1.18494873, -1.22829144, -1.27159578, -1.31486181, -1.35808958, -1.40127914, -1.44443055, -1.48754385, -1.5306191, -1.57365634, -1.61665564, -1.65961704, -1.7025406, -1.74542636, -1.78827437, -1.83108469, -1.87385737, -1.91659246, -1.95929001, -2.00195007, -2.04457269, -2.08715792, -2.12970582, -2.17221642, -2.21468979, -2.25712597, -2.29952502, -2.34188697, -2.38421189, -2.42649982, -2.46875082, -2.51096492, -2.55314219, -2.59528266, -2.6373864, -2.67945344, -2.72148384, -2.76347765, -2.80543491, -2.84735568, -2.88924, -2.93108792, -2.9728995 , -3.01467477, -3.05641378, -3.0981166, -3.13978325, -3.1814138, -3.22300829, -3.26456677, -3.30608928, -3.34757587, -3.38902659, -3.43044149, -3.47182062, -3.51316402, -3.55447174, -3.59574383, -3.63698033, -3.67818129, -3.71934677, -3.76047679, -3.80157142, -3.8426307, -3.88365467, -3.92464338, -3.96559689, -4.00651522, -4.04739844, -4.08824658, -4.1290597, -4.16983783, -4.21058103, -4.25128934]) testValue = 0 sensorTemp = np.array(tempLog.temperature) for ii in range(len(nominals)): if abs(nominals[ii]) > 0.0001: if abs(nominals[ii] - sensorTemp[ii]) > 1e-6: testValue = testValue + 1 else: if abs(sensorTemp[ii]) > 1e-6: testValue = testValue + 1 testValue = testValue/len(nominals) elif tempFault == "BIASED": biasVal = 1.0 tempMeasurementModel.senBias = biasVal truthValue = -3.251289338192501 unitTestSim.InitializeSimulation() unitTestSim.ConfigureStopTime(simulationTime) unitTestSim.ExecuteSimulation() elif tempFault == "GAUSS_MARKOV": [testResults, testMessage] = gauss_markov_test() return [testResults, testMessage] else: NotImplementedError("Fault type specified does not exist.") sensorTemp = np.array(tempLog.temperature) print(sensorTemp) # # compare the module results to the true values # if tempFault == "TEMP_FAULT_SPIKING": if not unitTestSupport.isDoubleEqualRelative(testValue, truthValue, 5E-1): # only 101 values so need this to be relatively relaxed (within 50%) testFailCount+= 1 elif not unitTestSupport.isDoubleEqualRelative(sensorTemp[-1], truthValue, 1E-12): testFailCount += 1 return [testFailCount, ''.join(testMessages)] # each test method requires a single assert method to be called # this check below just makes sure no sub-test failures were found
[docs] def test_gauss_markov_properties(): """ Test the statistical properties of the Gauss-Markov noise model in tempMeasurement. Tests: 1. Error bounds are not violated too often (<0.3% of samples) 2. Error bounds are actually being used (at least one >80% excursion) """ [testResults, testMessage] = gauss_markov_test() assert testResults < 1, testMessage
def gauss_markov_test(): testFailCount = 0 testMessages = [] # Create simulation variable names unitTaskName = "unitTask" unitProcessName = "TestProcess" # Create a sim module as an empty container unitTestSim = SimulationBaseClass.SimBaseClass() testProcessRate = macros.sec2nano(1.0) testProc = unitTestSim.CreateNewProcess(unitProcessName) testProc.addTask(unitTestSim.CreateNewTask(unitTaskName, testProcessRate)) # Set up the thermal sensor model sensorThermalModel = sensorThermal.SensorThermal() sensorThermalModel.ModelTag = 'sensorThermalModel' sensorThermalModel.nHat_B = [0, 0, 1] sensorThermalModel.sensorArea = 1.0 sensorThermalModel.sensorAbsorptivity = 0.25 sensorThermalModel.sensorEmissivity = 0.34 sensorThermalModel.sensorMass = 2.0 sensorThermalModel.sensorSpecificHeat = 890 sensorThermalModel.sensorPowerDraw = 30.0 sensorThermalModel.T_0 = 0 # Set up required messages scStateMsg = messaging.SCStatesMsg().write(messaging.SCStatesMsgPayload()) sunMsg = messaging.SpicePlanetStateMsg().write(messaging.SpicePlanetStateMsgPayload()) deviceStatusMsg = messaging.DeviceStatusMsg().write(messaging.DeviceStatusMsgPayload()) sensorThermalModel.stateInMsg.subscribeTo(scStateMsg) sensorThermalModel.sunInMsg.subscribeTo(sunMsg) sensorThermalModel.sensorStatusInMsg.subscribeTo(deviceStatusMsg) unitTestSim.AddModelToTask(unitTaskName, sensorThermalModel) # Set up tempMeasurement module tempMeasurementModel = tempMeasurement.TempMeasurement() tempMeasurementModel.tempInMsg.subscribeTo(sensorThermalModel.temperatureOutMsg) # Configure noise parameters tempSigma = 1.0 # Start with larger sigma # Set up Gauss-Markov noise with more conservative bounds tempMeasurementModel.faultState = tempMeasurement.TEMP_FAULT_GAUSS_MARKOV tempMeasurementModel.senNoiseStd = tempSigma tempMeasurementModel.walkBounds = 20.0 # Set RNG seed for repeatability tempMeasurementModel.RNGSeed = 464374481 unitTestSim.AddModelToTask(unitTaskName, tempMeasurementModel) # Setup message logging tempLog = tempMeasurementModel.tempOutMsg.recorder() unitTestSim.AddModelToTask(unitTaskName, tempLog) # Run simulation with more samples unitTestSim.InitializeSimulation() simulationTime = macros.sec2nano(100.0) unitTestSim.ConfigureStopTime(simulationTime) unitTestSim.ExecuteSimulation() # Extract temperature data for analysis tempData = np.array(tempLog.temperature) # Print debug info print(f"Number of samples: {len(tempData)}") print(f"Mean error: {np.mean(np.abs(tempData - sensorThermalModel.T_0))}") print(f"Max error: {np.max(np.abs(tempData - sensorThermalModel.T_0))}") print(f"Bound: {tempMeasurementModel.walkBounds}") # Test 1: Statistical Checks countAllow = len(tempData) * 0.3/100. # Allow 0.3% violations tempDiffCount = 0 for temp in tempData: if abs(temp - sensorThermalModel.T_0) > tempMeasurementModel.walkBounds: tempDiffCount += 1 if tempDiffCount > countAllow: testFailCount += 1 testMessages.append(f"FAILED: Too many temperature errors ({tempDiffCount} > {countAllow})") # Test 2: Error Bound Usage Check - similar to simpleNav approach sigmaThreshold = 0.8 hasLargeError = False for temp in tempData: if abs(temp - sensorThermalModel.T_0) > tempMeasurementModel.walkBounds * sigmaThreshold: hasLargeError = True break if not hasLargeError: testFailCount += 1 testMessages.append("FAILED: Temperature errors too small") if testFailCount == 0: print("PASSED: Gauss-Markov noise tests successful") return [testFailCount, ''.join(testMessages)] if __name__ == "__main__": run("TEMP_FAULT_NOMINAL")