Source code for test_thrFiringSchmitt


# ISC License
#
# Copyright (c) 2016, Autonomous Vehicle Systems Lab, University of Colorado at Boulder
#
# Permission to use, copy, modify, and/or distribute this software for any
# purpose with or without fee is hereby granted, provided that the above
# copyright notice and this permission notice appear in all copies.
#
# THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
# WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
# MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
# ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
# WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
# ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
# OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.


#
#   Unit Test Script
#   Module Name:        thrFiringSchmitt
#   Author:             John Alcorn
#   Creation Date:      August 25, 2016
#


import inspect
import os

import pytest

filename = inspect.getframeinfo(inspect.currentframe()).filename
path = os.path.dirname(os.path.abspath(filename))








# Import all of the modules that we are going to be called in this simulation
from Basilisk.utilities import SimulationBaseClass
from Basilisk.utilities import unitTestSupport                  # general support file with common unit test functions
from Basilisk.fswAlgorithms import thrFiringSchmitt            # import the module that is to be tested
from Basilisk.utilities import macros
from Basilisk.utilities import fswSetupThrusters
from Basilisk.architecture import messaging


# Uncomment this line is this test is to be skipped in the global unit test run, adjust message as needed.
# @pytest.mark.skipif(conditionstring)
# Uncomment this line if this test has an expected failure, adjust message as needed.
# @pytest.mark.xfail(conditionstring)
# Provide a unique test method name, starting with 'test_'.
# The following 'parametrize' function decorator provides the parameters and expected results for each
#   of the multiple test runs for this test.
[docs] @pytest.mark.parametrize("resetCheck, dvOn", [ (False, False), (True, False), (False, True), (True, True), ]) # update "module" in this function name to reflect the module name def test_thrFiringSchmitt(show_plots, resetCheck, dvOn): """Module Unit Test""" # each test method requires a single assert method to be called [testResults, testMessage] = thrFiringSchmittTestFunction(show_plots, resetCheck, dvOn) assert testResults < 1, testMessage
def thrFiringSchmittTestFunction(show_plots, resetCheck, dvOn): testFailCount = 0 # zero unit test result counter testMessages = [] # create empty array to store test log messages unitTaskName = "unitTask" # arbitrary name (don't change) unitProcessName = "TestProcess" # arbitrary name (don't change) # Create a sim module as an empty container unitTestSim = SimulationBaseClass.SimBaseClass() # Create test thread testProcessRate = macros.sec2nano(0.5) # update process rate update time testProc = unitTestSim.CreateNewProcess(unitProcessName) testProc.addTask(unitTestSim.CreateNewTask(unitTaskName, testProcessRate)) # Construct algorithm and associated C++ container module = thrFiringSchmitt.thrFiringSchmitt() module.ModelTag = "thrFiringSchmitt" # Add test module to runtime call list unitTestSim.AddModelToTask(unitTaskName, module) # Initialize the test module configuration data module.thrMinFireTime = 0.2 if dvOn == 1: module.baseThrustState = 1 else: module.baseThrustState = 0 module.level_on = .75 module.level_off = .25 # setup thruster cluster message fswSetupThrusters.clearSetup() rcsLocationData = [ [-0.86360, -0.82550, 1.79070], [-0.82550, -0.86360, 1.79070], [0.82550, 0.86360, 1.79070], [0.86360, 0.82550, 1.79070], [-0.86360, -0.82550, -1.79070], [-0.82550, -0.86360, -1.79070], [0.82550, 0.86360, -1.79070], [0.86360, 0.82550, -1.79070] ] rcsDirectionData = [ [1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, -1.0, 0.0], [-1.0, 0.0, 0.0], [-1.0, 0.0, 0.0], [0.0, -1.0, 0.0], [0.0, 1.0, 0.0], [1.0, 0.0, 0.0] ] for i in range(len(rcsLocationData)): fswSetupThrusters.create(rcsLocationData[i], rcsDirectionData[i], 0.5) thrConfMsg = fswSetupThrusters.writeConfigMessage() numThrusters = fswSetupThrusters.getNumOfDevices() module.thrConfInMsg.subscribeTo(thrConfMsg) # setup thruster impulse request message inputMessageData = messaging.THRArrayCmdForceMsgPayload() thrCmdMsg = messaging.THRArrayCmdForceMsg() module.thrForceInMsg.subscribeTo(thrCmdMsg) # Setup logging on the test module output message so that we get all the writes to it dataLog = module.onTimeOutMsg.recorder() unitTestSim.AddModelToTask(unitTaskName, dataLog) # Need to call the self-init and cross-init methods unitTestSim.InitializeSimulation() # Set the simulation time. # NOTE: the total simulation time may be longer than this value. The # simulation is stopped at the next logging event on or after the # simulation end time. if dvOn: effReq1 = [0.0, -0.1, -0.2, -0.3, -0.349, -0.351, -0.451, -0.5] effReq2 = [0.0, -0.1, -0.2, -0.3, -0.351, -0.351, -0.451, -0.5] effReq3 = [0.0, -0.1, -0.2, -0.3, -0.5, -0.351, -0.451, -0.5] effReq4 = [0.0, -0.1, -0.2, -0.3, -0.351, -0.351, -0.451, -0.5] else: effReq1 = [0.5, 0.05, 0.09, 0.11, 0.16, 0.18, 0.2, 0.49] effReq2 = [0.5, 0.05, 0.09, 0.11, 0.16, 0.18, 0.2, 0.11] effReq3 = [0.5, 0.05, 0.09, 0.11, 0.16, 0.18, 0.2, 0.01] effReq4 = [0.5, 0.05, 0.09, 0.11, 0.16, 0.18, 0.2, 0.11] inputMessageData.thrForce = effReq1 thrCmdMsg.write(inputMessageData) unitTestSim.ConfigureStopTime(macros.sec2nano(1.0)) # seconds to stop simulation unitTestSim.ExecuteSimulation() inputMessageData.thrForce = effReq2 thrCmdMsg.write(inputMessageData) unitTestSim.ConfigureStopTime(macros.sec2nano(2.0)) # seconds to stop simulation unitTestSim.ExecuteSimulation() inputMessageData.thrForce = effReq3 thrCmdMsg.write(inputMessageData) unitTestSim.ConfigureStopTime(macros.sec2nano(2.5)) # seconds to stop simulation unitTestSim.ExecuteSimulation() inputMessageData.thrForce = effReq4 thrCmdMsg.write(inputMessageData) unitTestSim.ConfigureStopTime(macros.sec2nano(3.0)) # seconds to stop simulation unitTestSim.ExecuteSimulation() if resetCheck: # reset the module to test this functionality module.Reset(macros.sec2nano(3.0)) # this module reset function needs a time input (in NanoSeconds) # run the module again for an additional 1.0 seconds unitTestSim.ConfigureStopTime(macros.sec2nano(5.5)) # seconds to stop simulation unitTestSim.ExecuteSimulation() # This pulls the actual data log from the simulation run. moduleOutput = dataLog.OnTimeRequest[:, :numThrusters] # print moduleOutput # set the filtered output truth states if resetCheck==1: if dvOn == 1: trueVector = [ [2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0], [2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0], [0.55, 0.4, 0.3, 0.2, 0.2, 0.0, 0.0, 0.0], [0.55, 0.4, 0.3, 0.2, 0.2, 0.0, 0.0, 0.0], [0.55, 0.4, 0.3, 0.2, 0.2, 0.0, 0.0, 0.0], [0.55, 0.4, 0.3, 0.2, 0.0, 0.0, 0.0, 0.0], [0.55, 0.4, 0.3, 0.2, 0.0, 0.0, 0.0, 0.0], [2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0], [0.55, 0.4, 0.3, 0.2, 0.0, 0.0, 0.0, 0.0], [0.55, 0.4, 0.3, 0.2, 0.0, 0.0, 0.0, 0.0], [0.55, 0.4, 0.3, 0.2, 0.0, 0.0, 0.0, 0.0], [0.55, 0.4, 0.3, 0.2, 0.0, 0.0, 0.0, 0.0], ] else: trueVector = [ [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.55, 0.0, 0.0, 0.0, 0.2, 0.2, 0.2, 0.49], [0.55, 0.0, 0.0, 0.0, 0.2, 0.2, 0.2, 0.2], [0.55, 0.0, 0.0, 0.0, 0.2, 0.2, 0.2, 0.2], [0.55, 0.0, 0.0, 0.0, 0.2, 0.2, 0.2, 0.0], [0.55, 0.0, 0.0, 0.0, 0.2, 0.2, 0.2, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.55, 0.0, 0.0, 0.0, 0.2, 0.2, 0.2, 0.0], [0.55, 0.0, 0.0, 0.0, 0.2, 0.2, 0.2, 0.0], [0.55, 0.0, 0.0, 0.0, 0.2, 0.2, 0.2, 0.0], [0.55, 0.0, 0.0, 0.0, 0.2, 0.2, 0.2, 0.0], ] else: if dvOn == 1: trueVector = [ [2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0], [2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0], [0.55, 0.4, 0.3, 0.2, 0.2, 0.0, 0.0, 0.0], [0.55, 0.4, 0.3, 0.2, 0.2, 0.0, 0.0, 0.0], [0.55, 0.4, 0.3, 0.2, 0.2, 0.0, 0.0, 0.0], [0.55, 0.4, 0.3, 0.2, 0.0, 0.0, 0.0, 0.0], [0.55, 0.4, 0.3, 0.2, 0.0, 0.0, 0.0, 0.0], ] else: trueVector = [ [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.55, 0.0, 0.0, 0.0, 0.2, 0.2, 0.2, 0.49], [0.55, 0.0, 0.0, 0.0, 0.2, 0.2, 0.2, 0.2], [0.55, 0.0, 0.0, 0.0, 0.2, 0.2, 0.2, 0.2], [0.55, 0.0, 0.0, 0.0, 0.2, 0.2, 0.2, 0.0], [0.55, 0.0, 0.0, 0.0, 0.2, 0.2, 0.2, 0.0], ] # else: # testFailCount+=1 # testMessages.append("FAILED: " + module.ModelTag + " Module failed with unsupported input parameters") # compare the module results to the truth values accuracy = 1e-12 unitTestSupport.writeTeXSnippet("toleranceValue", str(accuracy), path) testFailCount, testMessages = unitTestSupport.compareArray(trueVector, moduleOutput, accuracy, "OnTimeRequest", testFailCount, testMessages) snippentName = "passFail" + str(resetCheck) + str(dvOn) if testFailCount == 0: colorText = 'ForestGreen' print("PASSED: " + module.ModelTag) passedText = r'\textcolor{' + colorText + '}{' + "PASSED" + '}' else: colorText = 'Red' print("Failed: " + module.ModelTag) passedText = r'\textcolor{' + colorText + '}{' + "Failed" + '}' unitTestSupport.writeTeXSnippet(snippentName, passedText, path) # each test method requires a single assert method to be called # this check below just makes sure no sub-test failures were found return [testFailCount, ''.join(testMessages)] # # This statement below ensures that the unitTestScript can be run as a # stand-along python script # if __name__ == "__main__": test_thrFiringSchmitt( # update "module" in function name False, True, # resetOn False # dvOn )