# ISC License
#
# Copyright (c) 2016, Autonomous Vehicle Systems Lab, University of Colorado at Boulder
#
# Permission to use, copy, modify, and/or distribute this software for any
# purpose with or without fee is hereby granted, provided that the above
# copyright notice and this permission notice appear in all copies.
#
# THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
# WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
# MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
# ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
# WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
# ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
# OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
#
# Unit Test Script
# Module Name: thrFiringSchmitt
# Author: John Alcorn
# Creation Date: August 25, 2016
#
import inspect
import os
import pytest
filename = inspect.getframeinfo(inspect.currentframe()).filename
path = os.path.dirname(os.path.abspath(filename))
# Import all of the modules that we are going to be called in this simulation
from Basilisk.utilities import SimulationBaseClass
from Basilisk.utilities import unitTestSupport # general support file with common unit test functions
from Basilisk.fswAlgorithms import thrFiringSchmitt # import the module that is to be tested
from Basilisk.utilities import macros
from Basilisk.utilities import fswSetupThrusters
from Basilisk.architecture import messaging
# Uncomment this line is this test is to be skipped in the global unit test run, adjust message as needed.
# @pytest.mark.skipif(conditionstring)
# Uncomment this line if this test has an expected failure, adjust message as needed.
# @pytest.mark.xfail(conditionstring)
# Provide a unique test method name, starting with 'test_'.
# The following 'parametrize' function decorator provides the parameters and expected results for each
# of the multiple test runs for this test.
[docs]
@pytest.mark.parametrize("resetCheck, dvOn", [
(False, False),
(True, False),
(False, True),
(True, True),
])
# update "module" in this function name to reflect the module name
def test_thrFiringSchmitt(show_plots, resetCheck, dvOn):
"""Module Unit Test"""
# each test method requires a single assert method to be called
[testResults, testMessage] = thrFiringSchmittTestFunction(show_plots, resetCheck, dvOn)
assert testResults < 1, testMessage
def thrFiringSchmittTestFunction(show_plots, resetCheck, dvOn):
testFailCount = 0 # zero unit test result counter
testMessages = [] # create empty array to store test log messages
unitTaskName = "unitTask" # arbitrary name (don't change)
unitProcessName = "TestProcess" # arbitrary name (don't change)
# Create a sim module as an empty container
unitTestSim = SimulationBaseClass.SimBaseClass()
# Create test thread
testProcessRate = macros.sec2nano(0.5) # update process rate update time
testProc = unitTestSim.CreateNewProcess(unitProcessName)
testProc.addTask(unitTestSim.CreateNewTask(unitTaskName, testProcessRate))
# Construct algorithm and associated C++ container
module = thrFiringSchmitt.thrFiringSchmitt()
module.ModelTag = "thrFiringSchmitt"
# Add test module to runtime call list
unitTestSim.AddModelToTask(unitTaskName, module)
# Initialize the test module configuration data
module.thrMinFireTime = 0.2
if dvOn == 1:
module.baseThrustState = 1
else:
module.baseThrustState = 0
module.level_on = .75
module.level_off = .25
# setup thruster cluster message
fswSetupThrusters.clearSetup()
rcsLocationData = [
[-0.86360, -0.82550, 1.79070],
[-0.82550, -0.86360, 1.79070],
[0.82550, 0.86360, 1.79070],
[0.86360, 0.82550, 1.79070],
[-0.86360, -0.82550, -1.79070],
[-0.82550, -0.86360, -1.79070],
[0.82550, 0.86360, -1.79070],
[0.86360, 0.82550, -1.79070]
]
rcsDirectionData = [
[1.0, 0.0, 0.0],
[0.0, 1.0, 0.0],
[0.0, -1.0, 0.0],
[-1.0, 0.0, 0.0],
[-1.0, 0.0, 0.0],
[0.0, -1.0, 0.0],
[0.0, 1.0, 0.0],
[1.0, 0.0, 0.0]
]
for i in range(len(rcsLocationData)):
fswSetupThrusters.create(rcsLocationData[i], rcsDirectionData[i], 0.5)
thrConfMsg = fswSetupThrusters.writeConfigMessage()
numThrusters = fswSetupThrusters.getNumOfDevices()
module.thrConfInMsg.subscribeTo(thrConfMsg)
# setup thruster impulse request message
inputMessageData = messaging.THRArrayCmdForceMsgPayload()
thrCmdMsg = messaging.THRArrayCmdForceMsg()
module.thrForceInMsg.subscribeTo(thrCmdMsg)
# Setup logging on the test module output message so that we get all the writes to it
dataLog = module.onTimeOutMsg.recorder()
unitTestSim.AddModelToTask(unitTaskName, dataLog)
# Need to call the self-init and cross-init methods
unitTestSim.InitializeSimulation()
# Set the simulation time.
# NOTE: the total simulation time may be longer than this value. The
# simulation is stopped at the next logging event on or after the
# simulation end time.
if dvOn:
effReq1 = [0.0, -0.1, -0.2, -0.3, -0.349, -0.351, -0.451, -0.5]
effReq2 = [0.0, -0.1, -0.2, -0.3, -0.351, -0.351, -0.451, -0.5]
effReq3 = [0.0, -0.1, -0.2, -0.3, -0.5, -0.351, -0.451, -0.5]
effReq4 = [0.0, -0.1, -0.2, -0.3, -0.351, -0.351, -0.451, -0.5]
else:
effReq1 = [0.5, 0.05, 0.09, 0.11, 0.16, 0.18, 0.2, 0.49]
effReq2 = [0.5, 0.05, 0.09, 0.11, 0.16, 0.18, 0.2, 0.11]
effReq3 = [0.5, 0.05, 0.09, 0.11, 0.16, 0.18, 0.2, 0.01]
effReq4 = [0.5, 0.05, 0.09, 0.11, 0.16, 0.18, 0.2, 0.11]
inputMessageData.thrForce = effReq1
thrCmdMsg.write(inputMessageData)
unitTestSim.ConfigureStopTime(macros.sec2nano(1.0)) # seconds to stop simulation
unitTestSim.ExecuteSimulation()
inputMessageData.thrForce = effReq2
thrCmdMsg.write(inputMessageData)
unitTestSim.ConfigureStopTime(macros.sec2nano(2.0)) # seconds to stop simulation
unitTestSim.ExecuteSimulation()
inputMessageData.thrForce = effReq3
thrCmdMsg.write(inputMessageData)
unitTestSim.ConfigureStopTime(macros.sec2nano(2.5)) # seconds to stop simulation
unitTestSim.ExecuteSimulation()
inputMessageData.thrForce = effReq4
thrCmdMsg.write(inputMessageData)
unitTestSim.ConfigureStopTime(macros.sec2nano(3.0)) # seconds to stop simulation
unitTestSim.ExecuteSimulation()
if resetCheck:
# reset the module to test this functionality
module.Reset(macros.sec2nano(3.0)) # this module reset function needs a time input (in NanoSeconds)
# run the module again for an additional 1.0 seconds
unitTestSim.ConfigureStopTime(macros.sec2nano(5.5)) # seconds to stop simulation
unitTestSim.ExecuteSimulation()
# This pulls the actual data log from the simulation run.
moduleOutput = dataLog.OnTimeRequest[:, :numThrusters]
# print moduleOutput
# set the filtered output truth states
if resetCheck==1:
if dvOn == 1:
trueVector = [
[2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0],
[2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0],
[0.55, 0.4, 0.3, 0.2, 0.2, 0.0, 0.0, 0.0],
[0.55, 0.4, 0.3, 0.2, 0.2, 0.0, 0.0, 0.0],
[0.55, 0.4, 0.3, 0.2, 0.2, 0.0, 0.0, 0.0],
[0.55, 0.4, 0.3, 0.2, 0.0, 0.0, 0.0, 0.0],
[0.55, 0.4, 0.3, 0.2, 0.0, 0.0, 0.0, 0.0],
[2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0],
[0.55, 0.4, 0.3, 0.2, 0.0, 0.0, 0.0, 0.0],
[0.55, 0.4, 0.3, 0.2, 0.0, 0.0, 0.0, 0.0],
[0.55, 0.4, 0.3, 0.2, 0.0, 0.0, 0.0, 0.0],
[0.55, 0.4, 0.3, 0.2, 0.0, 0.0, 0.0, 0.0],
]
else:
trueVector = [
[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
[0.55, 0.0, 0.0, 0.0, 0.2, 0.2, 0.2, 0.49],
[0.55, 0.0, 0.0, 0.0, 0.2, 0.2, 0.2, 0.2],
[0.55, 0.0, 0.0, 0.0, 0.2, 0.2, 0.2, 0.2],
[0.55, 0.0, 0.0, 0.0, 0.2, 0.2, 0.2, 0.0],
[0.55, 0.0, 0.0, 0.0, 0.2, 0.2, 0.2, 0.0],
[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
[0.55, 0.0, 0.0, 0.0, 0.2, 0.2, 0.2, 0.0],
[0.55, 0.0, 0.0, 0.0, 0.2, 0.2, 0.2, 0.0],
[0.55, 0.0, 0.0, 0.0, 0.2, 0.2, 0.2, 0.0],
[0.55, 0.0, 0.0, 0.0, 0.2, 0.2, 0.2, 0.0],
]
else:
if dvOn == 1:
trueVector = [
[2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0],
[2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0],
[0.55, 0.4, 0.3, 0.2, 0.2, 0.0, 0.0, 0.0],
[0.55, 0.4, 0.3, 0.2, 0.2, 0.0, 0.0, 0.0],
[0.55, 0.4, 0.3, 0.2, 0.2, 0.0, 0.0, 0.0],
[0.55, 0.4, 0.3, 0.2, 0.0, 0.0, 0.0, 0.0],
[0.55, 0.4, 0.3, 0.2, 0.0, 0.0, 0.0, 0.0],
]
else:
trueVector = [
[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
[0.55, 0.0, 0.0, 0.0, 0.2, 0.2, 0.2, 0.49],
[0.55, 0.0, 0.0, 0.0, 0.2, 0.2, 0.2, 0.2],
[0.55, 0.0, 0.0, 0.0, 0.2, 0.2, 0.2, 0.2],
[0.55, 0.0, 0.0, 0.0, 0.2, 0.2, 0.2, 0.0],
[0.55, 0.0, 0.0, 0.0, 0.2, 0.2, 0.2, 0.0],
]
# else:
# testFailCount+=1
# testMessages.append("FAILED: " + module.ModelTag + " Module failed with unsupported input parameters")
# compare the module results to the truth values
accuracy = 1e-12
unitTestSupport.writeTeXSnippet("toleranceValue", str(accuracy), path)
testFailCount, testMessages = unitTestSupport.compareArray(trueVector, moduleOutput, accuracy,
"OnTimeRequest", testFailCount, testMessages)
snippentName = "passFail" + str(resetCheck) + str(dvOn)
if testFailCount == 0:
colorText = 'ForestGreen'
print("PASSED: " + module.ModelTag)
passedText = r'\textcolor{' + colorText + '}{' + "PASSED" + '}'
else:
colorText = 'Red'
print("Failed: " + module.ModelTag)
passedText = r'\textcolor{' + colorText + '}{' + "Failed" + '}'
unitTestSupport.writeTeXSnippet(snippentName, passedText, path)
# each test method requires a single assert method to be called
# this check below just makes sure no sub-test failures were found
return [testFailCount, ''.join(testMessages)]
#
# This statement below ensures that the unitTestScript can be run as a
# stand-along python script
#
if __name__ == "__main__":
test_thrFiringSchmitt( # update "module" in function name
False,
True, # resetOn
False # dvOn
)