#
# ISC License
#
# Copyright (c) 2023, Autonomous Vehicle Systems Lab, University of Colorado at Boulder
#
# Permission to use, copy, modify, and/or distribute this software for any
# purpose with or without fee is hereby granted, provided that the above
# copyright notice and this permission notice appear in all copies.
#
# THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
# WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
# MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
# ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
# WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
# ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
# OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
#
import pytest
import os, inspect, random
import numpy as np
filename = inspect.getframeinfo(inspect.currentframe()).filename
path = os.path.dirname(os.path.abspath(filename))
bskName = 'Basilisk'
splitPath = path.split(bskName)
# Import all the modules that are going to be called in this simulation
from Basilisk.utilities import SimulationBaseClass
from Basilisk.fswAlgorithms import thrusterPlatformState
from Basilisk.utilities import macros
from Basilisk.utilities import RigidBodyKinematics as rbk
from Basilisk.architecture import messaging
from Basilisk.architecture import bskLogging
def platformRotationTestFunction(show_plots, theta1, theta2, accuracy):
sigma_MB = np.array([0., 0., 0.])
r_BM_M = np.array([0.0, 0.1, 1.4])
r_FM_F = np.array([0.0, 0.0, -0.1])
r_TF_F = np.array([-0.01, 0.03, 0.02])
T_F = np.array([1.0, 1.0, 10.0])
swirlFactor = 0.1
unitTaskName = "unitTask" # arbitrary name (don't change)
unitProcessName = "TestProcess" # arbitrary name (don't change)
bskLogging.setDefaultLogLevel(bskLogging.BSK_WARNING)
# Create a sim module as an empty container
unitTestSim = SimulationBaseClass.SimBaseClass()
# Create test thread
testProcessRate = macros.sec2nano(1) # update process rate update time
testProc = unitTestSim.CreateNewProcess(unitProcessName)
testProc.addTask(unitTestSim.CreateNewTask(unitTaskName, testProcessRate))
# Construct algorithm and associated C++ container
platform = thrusterPlatformState.thrusterPlatformState()
platform.ModelTag = "platformReference"
# Add test module to runtime call list
unitTestSim.AddModelToTask(unitTaskName, platform)
# Initialize the test module configuration data
platform.sigma_MB = sigma_MB
platform.r_BM_M = r_BM_M
platform.r_FM_F = r_FM_F
# Create input THR Config Msg
THRConfig = messaging.THRConfigMsgPayload()
THRConfig.rThrust_B = r_TF_F
THRConfig.maxThrust = np.linalg.norm(T_F)
THRConfig.swirlTorque = THRConfig.maxThrust * swirlFactor
THRConfig.tHatThrust_B = T_F / THRConfig.maxThrust
thrConfigFMsg = messaging.THRConfigMsg().write(THRConfig)
platform.thrusterConfigFInMsg.subscribeTo(thrConfigFMsg)
# Create input hinged rigid body messages
hingedBodyMsg1 = messaging.HingedRigidBodyMsgPayload()
hingedBodyMsg1.theta = theta1
hingedBody1InMsg = messaging.HingedRigidBodyMsg().write(hingedBodyMsg1)
platform.hingedRigidBody1InMsg.subscribeTo(hingedBody1InMsg)
hingedBodyMsg2 = messaging.HingedRigidBodyMsgPayload()
hingedBodyMsg2.theta = theta2
hingedBody2InMsg = messaging.HingedRigidBodyMsg().write(hingedBodyMsg2)
platform.hingedRigidBody2InMsg.subscribeTo(hingedBody2InMsg)
# Setup logging on the test module output messages so that we get all the writes to it
thrConfigLog = platform.thrusterConfigBOutMsg.recorder()
unitTestSim.AddModelToTask(unitTaskName, thrConfigLog)
# Need to call the self-init and cross-init methods
unitTestSim.InitializeSimulation()
# Set the simulation time.
# NOTE: the total simulation time may be longer than this value. The
# simulation is stopped at the next logging event on or after the
# simulation end time.
unitTestSim.ConfigureStopTime(macros.sec2nano(0.5)) # seconds to stop simulation
# Begin the simulation time run set above
unitTestSim.ExecuteSimulation()
rThrust_B = thrConfigLog.rThrust_B[0]
tHatThrust_B = thrConfigLog.tHatThrust_B[0]
tMax = thrConfigLog.maxThrust[0]
tSwirl = thrConfigLog.swirlTorque[0]
FM = rbk.euler1232C([theta1, theta2, 0.0])
MB = rbk.MRP2C(sigma_MB)
FB = np.matmul(FM, MB)
r_TB_B = np.matmul(FB.transpose(), r_TF_F + r_FM_F - np.matmul(FM, r_BM_M)) # thrust application point
tHat_B = np.matmul(FB.transpose(), T_F) / np.linalg.norm(T_F) # thrust unit direction vector
np.testing.assert_allclose(rThrust_B, r_TB_B, rtol=0, atol=accuracy, verbose=True)
np.testing.assert_allclose(tHatThrust_B, tHat_B, rtol=0, atol=accuracy, verbose=True)
np.testing.assert_allclose(tMax, np.linalg.norm(T_F), rtol=0, atol=accuracy, verbose=True)
np.testing.assert_allclose(tSwirl, np.linalg.norm(T_F) * swirlFactor, rtol=0, atol=accuracy, verbose=True)
return
#
# This statement below ensures that the unitTestScript can be run as a
# stand-along python script
#
if __name__ == "__main__":
test_platformRotation(
False, # show_plots
0, # theta1
np.pi/36, # theta2
1e-10 # accuracy
)