.. _lambertPlanner: Module: lambertPlanner ====================== Executive Summary ----------------- Lambert's problem aims at finding an orbit given two position vectors :math:`\mathbf{r}_{1}` and :math:`\mathbf{r}_{2}` and the time if flight :math:`t_{flight}` between these two locations. That is, given the two position vectors :math:`\mathbf{r}_{1}` and :math:`\mathbf{r}_{2}` and the time of flight :math:`t_{flight}`, one finds the two velocity vectors :math:`\mathbf{v}_{1}` and :math:`\mathbf{v}_{2}` at the corresponding locations such that a spacecraft travels from :math:`\mathbf{r}_{1}` to :math:`\mathbf{r}_{2}` at the given time of flight. This module assumes that :math:`\mathbf{r}_{2}` is equal to a targeted location :math:`{}^N\mathbf{r}_{T/N}`, and that the spacecraft should arrive at the targeted location at specified time :math:`t_{final}`. To get to the targeted location, a maneuver should be performed at specified time :math:`t_{maneuver}`, where the maneuver time must be in the future. The location of the maneuver is assumed to not be known, so a 4th order Runge-Kutta (RK4) is used to propagate the current state (obtained from the :ref:`NavTransMsgPayload` navigation input message) to obtain the estimated position at maneuver time, corresponding to :math:`\mathbf{r}_{1}`. In other words, this module takes a targeted location :math:`{}^N\mathbf{r}_{T/N}`, final time :math:`t_{final}`, maneuver time :math:`t_{maneuver}` and the spacecraft navigation message :ref:`NavTransMsgPayload` to compute the input parameters :math:`\mathbf{r}_{1}`, :math:`\mathbf{r}_{2}` and time if flight :math:`t_{flight} = t_{final} - t_{maneuver}` that are required to solve Lambert's problem. This module writes these parameters to the :ref:`lambertProblemMsgPayload` message that is used as an input to the :ref:`lambertSolver` module, which subsequently solves Lambert's problem. Message Connection Descriptions ------------------------------- The following table lists all the module input and output messages. The module msg connection is set by the user from python. The msg type contains a link to the message structure definition, while the description provides information on what this message is used for. .. list-table:: Module I/O Messages :widths: 25 25 50 :header-rows: 1 * - Msg Variable Name - Msg Type - Description * - navTransInMsg - :ref:`NavTransMsgPayload` - translational navigation input message * - lambertProblemOutMsg - :ref:`lambertProblemMsgPayload` - lambert problem setup output message Module Assumptions and Limitations ---------------------------------- The equations of motion used inside the module to propagate the state assume simple two body point mass gravity, and the motion is propagated using a 4th order Runge-Kutta (RK4). Additionally, this module assumes that :math:`t_{final} > t_{maneuver} \ge t`, with final time :math:`t_{final}`, maneuver time :math:`t_{maneuver}` and current time :math:`t`. Algorithm --------- Equations of motion (two body point mass gravity) with gravitational parameter :math:`\mu` and spacecraft position vector :math:`\mathbf{r}`: .. math:: :label: eq:plannerEOM \mathbf{\ddot{r}} = - \frac{\mu}{r^3} \mathbf{r} User Guide ---------- The module is first initialized as follows: .. code-block:: python module = lambertPlanner.LambertPlanner() module.ModelTag = "lambertPlanner" module.setR_TN_N(np.array([0., 8000. * 1000,0.])) module.setFinalTime(2000.) module.setManeuverTime(1000.) module.setMu(3.986004418e14) module.setNumRevolutions(0) # module defaults this value to 0 if not specified module.useSolverIzzoMethod() # module uses Izzo by default if not specified unitTestSim.AddModelToTask(unitTaskName, module) The navigation translation message is then connected: .. code-block:: python module.navTransInMsg.subscribeTo(navTransInMsg) ---- .. autodoxygenfile:: lambertPlanner.h :project: lambertPlanner