.. _lambertValidator: Module: lambertValidator ======================== Executive Summary ----------------- This module computes the required Delta-V to change the spacecraft velocity to the one obtained by the :ref:`lambertSolver` module and checks if the resulting trajectory comes too close to the central body or too far away from the desired target location. The current spacecraft state from the :ref:`NavTransMsgPayload` navigation input message is propagated to the maneuver time :math:`t_{maneuver}` using a 4th order Runge-Kutta (RK4) to obtain the expected state just before the Delta-V maneuver. The computed Delta-V and the specified state uncertainty are added to generate a set of initial states right after the maneuver. These initial states are propagated to the final time :math:`t_{final}` where the spacecraft is supposed to arrive at the targeted position :math:`{}^N\mathbf{r}_{T/N}`. If the final distance from the target position is less than the specified maximum distance :math:`r_{TB,max}` for all trajectories, and none of the trajectories comes closer than :math:`r_{min}` to the central body, the computed Delta-V is written to the :ref:`DvBurnCmdMsgPayload` output message. If any of these constraints are violated, the message content remains zero. The message is also zeroed if the :ref:`LambertSolutionMsgPayload` or :ref:`LambertPerformanceMsgPayload` messages indicate that the Lambert solution is not valid or has not converged yet. Message Connection Descriptions ------------------------------- The following table lists all the module input and output messages. The module msg connection is set by the user from python. The msg type contains a link to the message structure definition, while the description provides information on what this message is used for. .. list-table:: Module I/O Messages :widths: 25 25 50 :header-rows: 1 * - Msg Variable Name - Msg Type - Description * - navTransInMsg - :ref:`NavTransMsgPayload` - translational navigation input message * - lambertProblemInMsg - :ref:`lambertProblemMsgPayload` - lambert problem setup input message * - lambertSolutionInMsg - :ref:`LambertSolutionMsgPayload` - lambert problem solution input message * - lambertPerformanceInMsg - :ref:`LambertPerformanceMsgPayload` - lambert problem performance message (additional information about the solution process) * - dvBurnCmdOutMsg - :ref:`DvBurnCmdMsgPayload` - Delta-V command output message Module Assumptions and Limitations ---------------------------------- The equations of motion used inside the module to propagate the state assume simple two body point mass gravity, and the motion is propagated using a 4th order Runge-Kutta (RK4). Additionally, this module assumes that :math:`t_{final} > t_{maneuver} > t`, with final time :math:`t_{final}`, maneuver time :math:`t_{maneuver}` and current time :math:`t`. Algorithm --------- Equations of motion (two body point mass gravity) with gravitational parameter :math:`\mu` and spacecraft position vector :math:`\mathbf{r}`: .. math:: :label: eq:validatorEOM \mathbf{\ddot{r}} = - \frac{\mu}{r^3} \mathbf{r} The 27 perturbed initial states that are propagated to check for any constraint violations are obtained in the following way: The uncertainty of each state, specified by the 6x6 matrix "uncertaintyStates" in Hill frame components, is added to each state in the plus and minus direction. For :math:`N=6` states, this gives :math:`2 \times N = 12` initial states. The uncertainty of the Delta-V magnitude is applied to the Delta-V vector for each of those initial states, both in the Delta-V direction and against the Delta-V direction (corresponding to maximum and minimum expected DV magnitude). Applied to the 12 initial states, this gives 24 states. The last 3 initial states are obtained by applying the maximum and minimum expected DV to the unperturbed spacecraft state (+2), and by leaving the state and Delta-V vector entirely unperturbed (+1). User Guide ---------- The module is first initialized as follows: .. code-block:: python module = lambertValidator.LambertValidator() module.ModelTag = "lambertValidator" module.setFinalTime(2000.) module.setManeuverTime(1000.) module.setMaxDistanceTarget(3000.) module.setMinOrbitRadius(6378 * 1000.) module.setUncertaintyStates(np.diag([5., 5., 5., 0.01, 0.01, 0.001])) # in Hill frame module.setUncertaintyDV(0.1) # [m/s] module.setDvConvergenceTolerance(0.01) # [m/s] unitTestSim.AddModelToTask(unitTaskName, module) The input messages are then connected: .. code-block:: python module.navTransInMsg.subscribeTo(navTransInMsg) module.lambertProblemInMsg.subscribeTo(lambertProblemInMsg) module.lambertPerformanceInMsg.subscribeTo(lambertPerformanceInMsg) module.lambertSolutionInMsg.subscribeTo(lambertSolutionInMsg) ---- .. autodoxygenfile:: lambertValidator.h :project: lambertValidator