Source code for test_unitAntennaPower

#
#  ISC License
#
#  Copyright (c) 2025, Department of Engineering Cybernetics, NTNU, Norway
#
#  Permission to use, copy, modify, and/or distribute this software for any
#  purpose with or without fee is hereby granted, provided that the above
#  copyright notice and this permission notice appear in all copies.
#
#  THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
#  WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
#  MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
#  ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
#  WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
#  ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
#  OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
#

import pytest

from Basilisk.utilities import SimulationBaseClass
from Basilisk.utilities import unitTestSupport
from Basilisk.architecture import messaging
from Basilisk.utilities import macros
from Basilisk.simulation import antennaPower

# Antenna state constants (from AntennaDefinitions.h)
ANTENNA_OFF = 0
ANTENNA_RX = 1
ANTENNA_TX = 2
ANTENNA_RXTX = 3


[docs] @pytest.mark.parametrize("antennaState", [ANTENNA_OFF, ANTENNA_RX, ANTENNA_TX, ANTENNA_RXTX]) @pytest.mark.parametrize("basePowerNeed", [0.0, 5.0]) def test_antennaPower(antennaState, basePowerNeed): """Test antenna power consumption for all antenna states with and without base power.""" testFailCount = 0 testMessages = [] unitTestSim = SimulationBaseClass.SimBaseClass() testProcessRate = macros.sec2nano(0.5) testProc = unitTestSim.CreateNewProcess("TestProcess") testProc.addTask(unitTestSim.CreateNewTask("unitTask", testProcessRate)) # Set up module antennaPowerModule = antennaPower.AntennaPower() antennaPowerModule.ModelTag = "antennaPower" antennaPowerModule.basePowerNeed = basePowerNeed unitTestSim.AddModelToTask("unitTask", antennaPowerModule) # Define test power values P_Rx = 2.0 P_Tx = 10.0 # Create and write antenna state message antennaMsgPayload = messaging.AntennaLogMsgPayload() antennaMsgPayload.antennaState = antennaState antennaMsgPayload.P_Rx = P_Rx antennaMsgPayload.P_Tx = P_Tx antennaMsg = messaging.AntennaLogMsg().write(antennaMsgPayload) antennaPowerModule.antennaSetStateInMsg.subscribeTo(antennaMsg) # Set up data logging dataLog = antennaPowerModule.nodePowerOutMsg.recorder() unitTestSim.AddModelToTask("unitTask", dataLog) # Run simulation unitTestSim.InitializeSimulation() unitTestSim.ConfigureStopTime(macros.sec2nano(1.0)) unitTestSim.ExecuteSimulation() # Compute expected power if antennaState == ANTENNA_OFF: truePower = -basePowerNeed elif antennaState == ANTENNA_RX: truePower = -(P_Rx + basePowerNeed) elif antennaState == ANTENNA_TX: truePower = -(P_Tx + basePowerNeed) elif antennaState == ANTENNA_RXTX: truePower = -(P_Rx + P_Tx + basePowerNeed) # Check results for i, val in enumerate(dataLog.netPower): if not unitTestSupport.isDoubleEqual(float(val), truePower, 1e-12): testFailCount += 1 testMessages.append(f"netPower[{i}]: got {val}, expected {truePower}") if testFailCount == 0: print("PASSED: " + antennaPowerModule.ModelTag) else: print(testMessages) assert testFailCount < 1, "".join(testMessages)
if __name__ == "__main__": for state in [ANTENNA_OFF, ANTENNA_RX, ANTENNA_TX, ANTENNA_RXTX]: for basePower in [0.0, 5.0]: test_antennaPower(state, basePower)