Module: horizonOpNav
Executive Summary
Converter that takes a limb message and camera information and outputs a relative position to the object. This algorithm was developed by J. Christian.
The module
PDF Description
contains further information on this module’s function,
how to run it, as well as testing.
Message Connection Descriptions
The following table lists all the module input and output messages. The module msg connection is set by the user from python. The msg type contains a link to the message structure definition, while the description provides information on what this message is used for.
Msg Variable Name |
Msg Type |
Description |
---|---|---|
opNavOutMsg |
output navigation message for relative position |
|
cameraConfigInMsg |
camera config input message |
|
attInMsg |
attitude input message |
|
limbInMsg |
limb input message |
Functions
-
void SelfInit_horizonOpNav(HorizonOpNavData *configData, int64_t moduleID)
This method transforms pixel, line, and diameter data into heading data for orbit determination or heading determination.
- Parameters:
configData – The configuration data associated with the ephemeris model
moduleID – The module identification integer
-
void Update_horizonOpNav(HorizonOpNavData *configData, uint64_t callTime, int64_t moduleID)
This method reads in the camera and circle messages and extracts navigation data from them. It outputs the heading (norm and direction) to the celestial body identified in the inertial frame. It provides the heading to the most robust circle identified by the image processing algorithm.
- Parameters:
configData – The configuration data associated with the ephemeris model
callTime – The clock time at which the function was called (nanoseconds)
moduleID – The module identification integer
-
void Reset_horizonOpNav(HorizonOpNavData *configData, uint64_t callTime, int64_t moduleID)
This resets the module to original states.
- Parameters:
configData – The configuration data associated with the ephemeris model
callTime – The clock time at which the function was called (nanoseconds)
moduleID – The module identification integer
-
void QRDecomp(double *inMat, int32_t nRow, double *Q, double *R)
This performs a QR decomposition on a input matrix. In this method it’s used on the H matrix made up of the limb points
- Parameters:
inMat – The input matrix to decompose
nRow – The number of rows
Q – The output Q matrix (numbLimb x 3)
R – The output R matrix (3 x 3)
-
void BackSub(double *R, double *inVec, int32_t nRow, double *n)
This performs a backsubstitution solve. This methods solves for n given Rn = V with R an upper triangular matrix.
- Parameters:
R – The upper triangular matrix for the backsolve
inVec – Vector on the Right-Hand-Side of the Rn = V equation
nRow – The number of rows/columns
n – The solution vector
-
struct HorizonOpNavData
- #include <horizonOpNav.h>
The configuration structure for the horizon OpNav module.
Public Members
-
OpNavMsg_C opNavOutMsg
[-] output navigation message for relative position
-
CameraConfigMsg_C cameraConfigInMsg
camera config input message
-
NavAttMsg_C attInMsg
attitude input message
-
OpNavLimbMsg_C limbInMsg
limb input message
-
int32_t planetTarget
The planet targeted (None = 0, Earth = 1, Mars = 2, Jupiter = 3 are allowed)
-
double noiseSF
A scale factor to control measurement noise.
-
BSKLogger *bskLogger
BSK Logging.
-
OpNavMsg_C opNavOutMsg