Module: smallBodyWaypointFeedback

Executive Summary

This module is provides a feedback control law for waypoint-to-waypoint control about a small body. The waypoints are defined in the Hill frame of the body.

Message Connection Descriptions

The following table lists all the module input and output messages. The module msg connection is set by the user from python. The msg type contains a link to the message structure definition, while the description provides information on what this message is used for.

Module I/O Messages

Msg Variable Name

Msg Type

Description

navTransInMsg

NavTransMsgPayload

translational navigation input message

navAttInMsg

NavAttMsgPayload

attitude navigation input message

asteroidEphemerisInMsg

EphemerisMsgPayload

asteroid ephemeris input message

sunEphemerisInMsg

EphemerisMsgPayload

sun ephemeris input message

forceOutMsg

CmdForceBodyMsgPayload

force command output

forceOutMsgC

CmdForceBodyMsgPayload

C-wrapped force output message

Detailed Module Description

General Function

The smallBodyWaypointFeedback() module provides a solution for waypoint-to-waypoint control about a small body. The feedback control law is similar to the cartesian coordinate continuous feedback control law in Chapter 14 of Analytical Mechanics of Space Systems. A cannonball SRP model, third body perturbations from the sun, and point-mass gravity are utilized. The state inputs are messages written out by Module: simpleNav and Module: planetNav modules or an estimator that provides the same input messages.

Algorithm

The state vector is defined as follows:

(1)\[\begin{split}\mathbf{X} = \begin{bmatrix} \mathbf{x}_1\\ \mathbf{x}_2\\ \end{bmatrix}= \begin{bmatrix} {}^O\mathbf{r}_{B/O} \\ {}^O\dot{\mathbf{r}}_{B/O} \\ \end{bmatrix}\end{split}\]

The associated frame definitions may be found in the following table.

Frame Definitions

Frame Description

Frame Definition

Small Body Hill Frame

\(O: \{\hat{\mathbf{o}}_1, \hat{\mathbf{o}}_2, \hat{\mathbf{o}}_3\}\)

Spacecraft Body Frame

\(B: \{\hat{\mathbf{b}}_1, \hat{\mathbf{b}}_2, \hat{\mathbf{b}}_3\}\)

The derivation of the control law is skipped here for brevity. The thrust, however, is computed as follows:

(2)\[\begin{equation} \mathbf{u} = -(f(\mathbf{x}) - f(\mathbf{x}_{ref})) - [K_1]\Delta\mathbf{x}_1 - [K_2]\Delta\mathbf{x}_2 \end{equation}\]

The relative velocity dynamics are described in detail by Takahashi and Scheeres.

(3)\[\begin{split}\begin{split} f(\mathbf{x}) = ^O\ddot{\mathbf{r}}_{S/O} = -\ddot{F}[\tilde{\hat{\mathbf{o}}}_3]\mathbf{x}_1 - 2\dot{F}[\tilde{\hat{\mathbf{o}}}_3]\mathbf{x}_2 - \dot{F}^2[\tilde{\hat{\mathbf{o}}}_3][\tilde{\hat{\mathbf{o}}}_3]\mathbf{x}_1- \dfrac{\mu_a \mathbf{x}_1}{||\mathbf{x}_1||^3} + \dfrac{\mu_s(3{}^O\hat{\mathbf{d}}{}^O\hat{\mathbf{d}}^T-[I_{3 \times 3}])\mathbf{x}_1}{d^3} \\ + C_{SRP}\dfrac{P_0(1+\rho)A_{sc}}{M_{sc}}\dfrac{(1\text{AU})^2}{d^2}\hat{\mathbf{o}}_1 + \sum_i^I\dfrac{{}^O\mathbf{F}_i}{M_{sc}} + \sum_j^J\dfrac{{}^O\mathbf{F}_j}{M_{sc}} \end{split}\end{split}\]

User Guide

A detailed example of the module is provided in scenarioSmallBodyFeedbackControl. However, the initialization of the module is also shown here. The module is first initialized as follows:

waypointFeedback = smallBodyWaypointFeedback.SmallBodyWaypointFeedback()

The asteroid ephemeris input message is then connected. In this example, we use the Module: planetNav module.

waypointFeedback.asteroidEphemerisInMsg.subscribeTo(planetNavMeas.ephemerisOutMsg)

A standalone message is created for the sun ephemeris message.

sunEphemerisMsgData = messaging.EphemerisMsgPayload()
sunEphemerisMsg = messaging.EphemerisMsg()
sunEphemerisMsg.write(sunEphemerisMsgData)
waypointFeedback.sunEphemerisInMsg.subscribeTo(sunEphemerisMsg)

The navigation attitude and translation messages are then subscribed to

waypointFeedback.navAttInMsg.subscribeTo(simpleNavMeas.attOutMsg)
waypointFeedback.navTransInMsg.subscribeTo(simpleNavMeas.transOutMsg)

Finally, the area, mass, inertia, and gravitational parameter of the asteroid are initialized

waypointFeedback.A_sc = 1.  # Surface area of the spacecraft, m^2
waypointFeedback.M_sc = mass  # Mass of the spacecraft, kg
waypointFeedback.IHubPntC_B = unitTestSupport.np2EigenMatrix3d(I)  # sc inertia
waypointFeedback.mu_ast = mu  # Gravitational constant of the asteroid

The reference states are then defined:

waypointFeedback.x1_ref = [-2000., 0., 0.]
waypointFeedback.x2_ref = [0.0, 0.0, 0.0]

Finally, the feedback gains are set:

waypointFeedback.K1 = unitTestSupport.np2EigenMatrix3d([5e-4, 0e-5, 0e-5, 0e-5, 5e-4, 0e-5, 0e-5, 0e-5, 5e-4])
waypointFeedback.K2 = unitTestSupport.np2EigenMatrix3d([1., 0., 0., 0., 1., 0., 0., 0., 1.])

class SmallBodyWaypointFeedback : public SysModel
#include <smallBodyWaypointFeedback.h>

This module is provides a Lyapunov feedback control law for waypoint to waypoint guidance and control about a small body. The waypoints are defined in the Hill frame of the body.

Public Functions

SmallBodyWaypointFeedback()

This is the constructor for the module class. It sets default variable values and initializes the various parts of the model

~SmallBodyWaypointFeedback()

Module Destructor

void SelfInit()

Self initialization for C-wrapped messages.

Initialize C-wrapped output messages

void Reset(uint64_t CurrentSimNanos)

This method is used to reset the module and checks that required input messages are connect.

void UpdateState(uint64_t CurrentSimNanos)

This is the main method that gets called every time the module is updated. Provide an appropriate description.

void readMessages()

This method reads the input messages each call of updateState

void computeControl(uint64_t CurrentSimNanos)

This method computes the control using a Lyapunov feedback law

void writeMessages(uint64_t CurrentSimNanos)

This method reads the input messages each call of updateState

Public Members

ReadFunctor<NavTransMsgPayload> navTransInMsg

translational navigation input message

ReadFunctor<NavAttMsgPayload> navAttInMsg

attitude navigation input message

ReadFunctor<EphemerisMsgPayload> asteroidEphemerisInMsg

asteroid ephemeris input message

ReadFunctor<EphemerisMsgPayload> sunEphemerisInMsg

sun ephemeris input message

Message<CmdForceBodyMsgPayload> forceOutMsg

force command output

CmdForceBodyMsg_C forceOutMsgC = {}

C-wrapped force output message.

BSKLogger bskLogger

&#8212; BSK Logging

double C_SRP

SRP scaling coefficient.

double P_0

SRP at 1 AU.

double rho

Surface reflectivity.

double A_sc

Surface area of the spacecraft.

double M_sc

Mass of the spacecraft.

Eigen::Matrix3d IHubPntC_B

sc inertia

double mu_ast

Gravitational constant of the asteroid.

Eigen::Vector3d x1_ref

Desired Hill-frame position.

Eigen::Vector3d x2_ref

Desired Hill-frame velocity.

Eigen::Matrix3d K1

Position gain.

Eigen::Matrix3d K2

Velocity gain.

Private Members

NavTransMsgPayload navTransInMsgBuffer

local copy of message buffer

NavAttMsgPayload navAttInMsgBuffer

local copy of message buffer

EphemerisMsgPayload asteroidEphemerisInMsgBuffer

local copy of message buffer

EphemerisMsgPayload sunEphemerisInMsgBuffer

local copy of message buffer

uint64_t prevTime

Previous time, ns.

double mu_sun

Gravitational parameter of the sun.

Eigen::Matrix3d o_hat_3_tilde

Tilde matrix of the third asteroid orbit frame base vector.

Eigen::Vector3d o_hat_1

First asteroid orbit frame base vector.

Eigen::MatrixXd I

3 x 3 identity matrix

ClassicElements oe_ast

Orbital elements of the asteroid.

double F_dot

Time rate of change of true anomaly.

double F_ddot

Second time derivative of true anomaly.

Eigen::Vector3d r_BN_N
Eigen::Vector3d v_BN_N
Eigen::Vector3d v_ON_N
Eigen::Vector3d r_ON_N
Eigen::Vector3d r_SN_N
Eigen::Matrix3d dcm_ON

DCM from the inertial frame to the small-body’s hill frame.

Eigen::Vector3d r_SO_O

Vector from the small body’s origin to the inertial frame origin in small-body hill frame components.

Eigen::Vector3d f_curr
Eigen::Vector3d f_ref
Eigen::Vector3d x1
Eigen::Vector3d x2
Eigen::Vector3d dx1
Eigen::Vector3d dx2
Eigen::Vector3d thrust_O
Eigen::Vector3d thrust_B