Module: facetSRPDynamicEffector

Executive Summary

This dynamic effector module uses a faceted spacecraft model to calculate the force and torque acting on a spacecraft due to solar radiation pressure (SRP). The force and torque are calculated about the spacecraft body frame origin point \(B\). The module can be configured for either a static spacecraft or a spacecraft with any number of articulating facets. For example, a spacecraft with two articulating solar arrays can be configured using 4 articulating facets. The unit test for this module shows how to set up this particular configuration.

Warning

The module variables numFacets and numArticulatedFacets will be moved to private module variables Dec 2025. Setters and getters are now added to access these variables.

Message Connection Descriptions

The following table lists all the module input and output messages. The module msg connection is set by the user from python. The msg type contains a link to the message structure definition, while the description provides information on what this message is used for.

Module I/O Messages

Msg Variable Name

Msg Type

Description

sunInMsg

SpicePlanetStateMsgPayload

Input msg for the Sun state information

articulatedFacetDataInMsgs

HingedRigidBodyMsgPayload

(Optional) Input msg vector containing the current articulated facet angles

Detailed Module Description

Mathematical Modeling

The spacecraft is represented as a collection of \(N\) total facets with negligible thickness. Each facet is characterized by an area \(A\), an attitude direction cosine matrix (DCM) \([\mathcal{F_0B}]\) relative to the spacecraft hub frame \(\mathcal{B}\), a unit vector normal to its surface \(\boldsymbol{\hat{n}}\), an articulation axis (optional) \(\boldsymbol{\hat{s}}\), the facet center of pressure (COP) location relative to the spacecraft body frame origin point \(B\), and three optical coefficients representing the interaction of impinging photons with the facet surface. The fraction of specularly reflected, diffusely scattered, and absorbed photons are represented using the coefficients \(\delta, \rho,\) and \(\alpha\), respectively.

Note

  • The facet normal vectors and rotation axes are required to be specified in the facet frame \(\mathcal{F}\).

  • The articulating facets are assumed to rotate with 1 degree-of-freedom (DOF) about the specified articulation axis \(\boldsymbol{\hat{s}}\).

  • The facet COP vectors are required to be defined in the spacecraft body frame \(\mathcal{B}\). This module assumes that each facet COP vector is fixed in the spacecraft body frame for both static and articulating facets. Therefore, it is assumed that the facet COP is the point where the facet normal vector and facet rotation axis intersect.

For each articulating facet, the current facet normal vector must be computed in the spacecraft body frame \(\mathcal{B}\). Using the facet articulation axis \(\boldsymbol{\hat{s}}\) and the current facet articulation angle \(\phi\), the DCM required to rotate from the initial facet attitude to the final facet attitude is obtained using the principal rotation vector (PRV) transformation:

\[[\mathcal{F}\mathcal{F}_0] = \text{PRV2C}(\phi, {}^\mathcal{F} \boldsymbol{\hat{s}})\]

The transformation from the spacecraft body frame to the current facet attitude can next be determined:

\[[\mathcal{F}\mathcal{B}] = [\mathcal{F}\mathcal{F}_0] [\mathcal{F}_0\mathcal{B}]\]

The facet normal vector can now be transformed to the spacecraft body frame using the active transformation:

\[{}^\mathcal{B} \boldsymbol{\hat{n}} = [\mathcal{BF}] {}^{\mathcal{F}} \boldsymbol{\hat{n}}\]

Next, using the provided facet information and spacecraft Sun-relative position vector \(\boldsymbol{r}_{\text{sc} / \odot }\), the estimated SRP force acting on the spacecraft is calculated by summing the SRP force contribution from all \(N\) facets:

\[\boldsymbol{F}_{\text{SRP}} = \sum_{i = 1}^{N} \boldsymbol{F}_{\text{SRP}_i} = -P(|\boldsymbol{r}_{\text{sc} / \odot }|) \sum_{i = 1}^{N} A_i \cos(\theta_i) \left [ (1 - \delta_i) \boldsymbol{\hat{s}} + 2 \left ( \frac{\rho_i}{3} + \delta_i \cos(\theta_i) \right ) \boldsymbol{\hat{n}}_{i}\right ]\]

Note that all values in the above expression must be specified in the spacecraft body frame. \(\theta\) is defined as the incidence angle between each facet normal vector and the Sun-direction vector. \(P(|\boldsymbol{r}_{\text{sc}/ \odot\ }|)\) represents the pressure acting on the spacecraft scaled by the spacecraft heliocentric distance. \(\boldsymbol{\hat{s}}\) is the unit direction vector pointing radially towards the Sun from the spacecraft body frame origin point \(B\). This vector is found by subtracting the current spacecraft inertial position from the Sun position:

\[{}^\mathcal{B} \boldsymbol{\hat{s}} = [\mathcal{BN}] ( {}^\mathcal{N} \boldsymbol{r}_{\odot / N} - {}^\mathcal{N} \boldsymbol{r}_{\text{sc} / N})\]

The total SRP torque acting on the spacecraft about point \(B\) is calculated by summing the torque contributions over all \(N\) facets:

\[\boldsymbol{L}_{\text{SRP},B} = \sum_{i = 1}^{N} \boldsymbol{L}_{{\text{SRP},B}_i} = \sum_{i = 1}^{N} \boldsymbol{r}_{{COP_i}/B} \times \boldsymbol{F}_{\text{SRP}_i}\]

Module Testing

The unit test for this module ensures that the calculated SRP force and torque acting on the spacecraft about the body-fixed point B is properly computed for either a static spacecraft or a spacecraft with any number of articulating facets. The spacecraft geometry defined in the test consists of a cubic hub and two circular solar arrays. Six static square facets represent the cubic hub and four articulated circular facets describe the articulating solar arrays. To verify the module functionality, the final SRP force and torque simulation values are checked with the true values computed in python.

User Guide

The following steps are required to set up the facetSRPDynamicEffector module in python.

Important

Be sure to include the Sun as a gravitational body in the simulation to use this module.

  1. First import the facetSRPDynamicEffector class:

    from Basilisk.simulation import facetSRPDynamicEffector
    
  2. Next, create an instantiation of the SRP dynamic effector:

    SRPEffector = facetSRPDynamicEffector.FacetSRPDynamicEffector()
    SRPEffector.ModelTag = "SRPEffector"
    
  3. The user is required to set the total number of spacecraft facets and the number of articulated facets. For example, if the user wants to create a spacecraft with 10 total facets, four of which articulate:

    SRPEffector.setNumFacets(10)
    SRPEffector.setNumArticulatedFacets(4)
    

Warning

The module variables numFacets and numArticulatedFacets will be moved to private module variables Dec 2025. Setters and getters are now added to access these variables.

  1. If the spacecraft contains articulated facets, a HingedRigidBodyMsgPayload articulation angle message must be configured for each articulated facet. An example using two stand-alone messages is provided below:

    facetRotAngle1 = macros.D2R * 10.0  # [rad]
    facetRotAngle2 = macros.D2R * -10.0  # [rad]
    
    facetRotAngle1MessageData = messaging.HingedRigidBodyMsgPayload()
    facetRotAngle1MessageData.theta = facetRotAngle1  # [rad]
    facetRotAngle1MessageData.thetaDot = 0.0  # [rad]
    facetRotAngle1Message = messaging.HingedRigidBodyMsg().write(facetRotAngle1MessageData)
    
    facetRotAngle2MessageData = messaging.HingedRigidBodyMsgPayload()
    facetRotAngle2MessageData.theta = facetRotAngle2  # [rad]
    facetRotAngle2MessageData.thetaDot = 0.0  # [rad]
    facetRotAngle2Message = messaging.HingedRigidBodyMsg().write(facetRotAngle2MessageData)
    
  2. For articulating facets, the user must configure the module’s optional articulatedFacetDataInMsgs input message by calling the addArticulatedFacet() method with each facet’s HingedRigidBodyMsgPayload articulation angle input message:

    srpEffector.addArticulatedFacet(facetRotAngle1Message)
    srpEffector.addArticulatedFacet(facetRotAngle1Message)
    srpEffector.addArticulatedFacet(facetRotAngle2Message)
    srpEffector.addArticulatedFacet(facetRotAngle2Message)
    
  3. Next, define the spacecraft facet geometry information that is contained in the module’s FacetedSRPSpacecraftGeometryData structure:

    # Define facet areas
    area1 = 1.5 * 1.5
    area2 = np.pi * (0.5 * 7.5) * (0.5 * 7.5)
    facetAreaList = [area1, area1, area1, area1, area1, area1, area2, area2, area2, area2]
    
    # Define the initial facet attitudes relative to B frame
    sigma_F01B = (macros.D2R * -90.0) * np.array([0.0, 0.0, 1.0])
    sigma_F02B = (macros.D2R * 0.0) * np.array([0.0, 0.0, 1.0])
    sigma_F03B = (macros.D2R * 90.0) * np.array([0.0, 0.0, 1.0])
    sigma_F04B = (macros.D2R * 180.0) * np.array([0.0, 0.0, 1.0])
    sigma_F05B = (macros.D2R * 90.0) * np.array([1.0, 0.0, 0.0])
    sigma_F06B = (macros.D2R * -90.0) * np.array([1.0, 0.0, 0.0])
    sigma_F07B = (macros.D2R * 0.0) * np.array([1.0, 0.0, 0.0])
    sigma_F08B = (macros.D2R * 180.0) * np.array([1.0, 0.0, 0.0])
    sigma_F09B = (macros.D2R * 0.0) * np.array([1.0, 0.0, 0.0])
    sigma_F010B = (macros.D2R * 180.0) * np.array([1.0, 0.0, 0.0])
    facetDcm_F0BList = [rbk.MRP2C(sigma_F01B),
                        rbk.MRP2C(sigma_F02B),
                        rbk.MRP2C(sigma_F03B),
                        rbk.MRP2C(sigma_F04B),
                        rbk.MRP2C(sigma_F05B),
                        rbk.MRP2C(sigma_F06B),
                        rbk.MRP2C(sigma_F07B),
                        rbk.MRP2C(sigma_F08B),
                        rbk.MRP2C(sigma_F09B),
                        rbk.MRP2C(sigma_F010B)]
    
    # Define the facet normal vectors in B frame components
    facetNHat_FList = [np.array([0.0, 1.0, 0.0]),
                       np.array([0.0, 1.0, 0.0]),
                       np.array([0.0, 1.0, 0.0]),
                       np.array([0.0, 1.0, 0.0]),
                       np.array([0.0, 1.0, 0.0]),
                       np.array([0.0, 1.0, 0.0]),
                       np.array([0.0, 1.0, 0.0]),
                       np.array([0.0, 1.0, 0.0]),
                       np.array([0.0, 1.0, 0.0]),
                       np.array([0.0, 1.0, 0.0])]
    
    # Define facet articulation axes in B frame components
    facetRotHat_FList = [np.array([0.0, 0.0, 0.0]),
                         np.array([0.0, 0.0, 0.0]),
                         np.array([0.0, 0.0, 0.0]),
                         np.array([0.0, 0.0, 0.0]),
                         np.array([0.0, 0.0, 0.0]),
                         np.array([0.0, 0.0, 0.0]),
                         np.array([1.0, 0.0, 0.0]),
                         np.array([-1.0, 0.0, 0.0]),
                         np.array([1.0, 0.0, 0.0]),
                         np.array([-1.0, 0.0, 0.0])]
    
    # Define facet center of pressure locations relative to point B
    facetR_CopB_BList = [np.array([0.75, 0.0, 0.0]),
                         np.array([0.0, 0.75, 0.0]),
                         np.array([-0.75, 0.0, 0.0]),
                         np.array([0.0, -0.75, 0.0]),
                         np.array([0.0, 0.0, 0.75]),
                         np.array([0.0, 0.0, -0.75]),
                         np.array([4.5, 0.0, 0.75]),
                         np.array([4.5, 0.0, 0.75]),
                         np.array([-4.5, 0.0, 0.75]),
                         np.array([-4.5, 0.0, 0.75])]
    
    # Define facet optical coefficients
    facetDiffuseCoeffList = np.array([0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1])
    facetSpecularCoeffList = np.array([0.9, 0.9, 0.9, 0.9, 0.9, 0.9, 0.9, 0.9, 0.9, 0.9])
    

Important

While setting up the FacetedSRPSpacecraftGeometryData structure:

  • Be sure to configure all data contained in the geometry data structure. For all static facets, the articulation axes may be set to zero.

  • Note that the module requires the articulated facet data to be added at the end of the data vectors.

  1. Next, populate the module’s FacetedSRPSpacecraftGeometryData structure with the spacecraft facet information using the addFacet() method:

    for i in range(numFacets):
        srpEffector.addFacet(facetAreaList[i],
                             facetDcm_F0BList[i],
                             facetNHat_FList[i],
                             facetRotHat_FList[i],
                             facetR_CopB_BList[i],
                             facetDiffuseCoeffList[i],
                             facetSpecularCoeffList[i])
    
  2. Connect the Sun’s ephemeris message to the SRP module:

    SRPEffector.sunInMsg.subscribeTo(sunMsg)
    
  3. Add the SRP dynamic effector to the spacecraft:

    scObject.addDynamicEffector(SRPEffector)
    

    See Module: spacecraft documentation on how to set up a spacecraft object.

  4. Finally, add the SRP effector module to the task list:

    unitTestSim.AddModelToTask(unitTaskName, SRPEffector)
    

Note

See the example script scenarioSepMomentumManagement, which illustrates how to set up a spacecraft with articulated panels for SRP calculation.


struct FacetedSRPSpacecraftGeometryData
#include <facetSRPDynamicEffector.h>

Spacecraft Geometry Data.

Public Members

std::vector<double> facetAreaList

[m^2] Vector of facet areas

std::vector<Eigen::Matrix3d> facetDcm_F0BList

Vector of facet frame F initial attitude DCMs relative to the B frame.

std::vector<Eigen::Vector3d> facetNHat_FList

Vector of facet normals expressed in facet F frame components.

std::vector<Eigen::Vector3d> facetRotHat_FList

[m] Vector of facet rotation axes expressed in facet F frame components

std::vector<Eigen::Vector3d> facetR_CopB_BList

[m] Vector of facet COP locations wrt point B expressed in B frame components

std::vector<double> facetDiffuseCoeffList

Vector of facet diffuse reflection optical coefficients.

std::vector<double> facetSpecularCoeffList

Vector of facet spectral reflection optical coefficients.

class FacetSRPDynamicEffector : public SysModel, public DynamicEffector
#include <facetSRPDynamicEffector.h>

Faceted Solar Radiation Pressure Dynamic Effector.

Public Functions

FacetSRPDynamicEffector() = default

Constructor.

~FacetSRPDynamicEffector() = default

Destructor.

void linkInStates(DynParamManager &states) override

Method for giving the effector access to the hub states.

This method gives the module access to the hub inertial attitude and position.

Parameters:

states – Dynamic parameter states

void computeForceTorque(double callTime, double timeStep) override

Method for computing the total SRP force and torque about point B.

This method computes the srp force and torque acting about the hub point B in B frame components.

Parameters:
  • callTime – [s] Time the method is called

  • timeStep – [s] Simulation time step

void Reset(uint64_t currentSimNanos) override

Reset method.

This method resets required module variables and checks the input messages to ensure they are linked.

Parameters:

currentSimNanos – [ns] Time the method is called

void setNumFacets(const uint64_t numFacets)

Setter method for the total number of spacecraft facets.

Setter method for the total number of facets used to model the spacecraft structure.

Parameters:

numFacets – Total number of spacecraft facets

void setNumArticulatedFacets(const uint64_t numArticulatedFacets)

Setter method for the number of articulated facets.

Setter method for the number of articulated facets used to model the spacecraft articulating components.

Parameters:

numArticulatedFacets – Number of articulated spacecraft facets

uint64_t getNumFacets() const

Getter method for the total number of spacecraft facets.

Getter method for the total number of facets used to model the spacecraft structure.

Returns:

uint64_t

uint64_t getNumArticulatedFacets() const

Getter method for the number of articulated facets.

Getter method for the number of articulated facets used to model the spacecraft articulating components.

Returns:

uint64_t

void addFacet(double area, Eigen::Matrix3d dcm_F0B, Eigen::Vector3d nHat_F, Eigen::Vector3d rotHat_F, Eigen::Vector3d r_CopB_B, double diffuseCoeff, double specularCoeff)

Method for adding facets to the spacecraft geometry structure.

This method populates the spacecraft facet geometry structure with user-input facet information.

Parameters:
  • area – [m^2] Facet area

  • dcm_F0B – Facet frame F initial attitude DCM relative to the B frame

  • nHat_F – Facet normal expressed in facet F frame components

  • rotHat_F – Facet articulation axis expressed in facet F frame components

  • r_CopB_B – [m] Facet location wrt point B expressed in B frame components

  • diffuseCoeff – Facet diffuse reflection optical coefficient

  • specularCoeff – Facet spectral reflection optical coefficient

void addArticulatedFacet(Message<HingedRigidBodyMsgPayload> *tmpMsg)

Method for adding articulated facets to the spacecraft geometry structure.

This method subscribes the articulated facet angle input messages to the module articulatedFacetDataInMsgs input messages.

Parameters:

tmpMsg – hingedRigidBody input message containing facet articulation angle data

void ReadMessages()

Method to read input messages.

This method reads the Sun state input message. If time-varying facet articulations are considered, the articulation angle messages are also read.

Public Members

ReadFunctor<SpicePlanetStateMsgPayload> sunInMsg

Sun spice ephemeris input message.

uint64_t numFacets = 0

Total number of spacecraft facets.

uint64_t numArticulatedFacets = 0

Number of articulated facets.

Private Members

std::vector<ReadFunctor<HingedRigidBodyMsgPayload>> articulatedFacetDataInMsgs

Articulated facet angle data input message.

std::vector<double> facetArticulationAngleList

[rad] Vector of facet rotation angles

std::vector<Eigen::Vector3d> facetNHat_BList

Vector of facet normals expressed in B frame components.

FacetedSRPSpacecraftGeometryData scGeometry

Spacecraft facet data structure.

Eigen::Vector3d r_SN_N

[m] Sun inertial position vector

StateData *hubPosition = nullptr

[m] Hub inertial position vector

StateData *hubSigma = nullptr

Hub MRP inertial attitude.

bool facetAngleMsgRead = false

Boolean variable signaling that the facet articulation messages are read.