Module: lambertSurfaceRelativeVelocity
Executive Summary
This module computes the required inertial spacecraft velocity \({}^N\mathbf{v}_{B/N}\) to satisfy the desired relative velocity to the surface \({}^S\mathbf{v}_{rel,des}\) at position \({}^N\mathbf{r}_{B/N}\) and (maneuver) time \(t\). The module takes into account the rotation and orientation of the celestial body, provided by the EphemerisMsgPayload. The spacecraft position \({}^N\mathbf{r}_{B/N}\) is provided by the second position vector \({}^N\mathbf{r}_{2}\) in LambertProblemMsgPayload, as this module is designed to be used at the end of a Lambert problem transfer arc. The surface frame S, in which the desired relative velocity vector is expressed in, is an East-North-Up frame (third unit vector is in the radial direction, first unit vector is perpendicular to the angular velocity vector of the celestial body and the radial direction, and the second unit vector completes the right-handed coordinate frame). Note that the frame is not fully defined when the angular velocity vector of the celestial body \(\mathbf{\omega}_{P/N}\) is zero. In this case, the frame S is defined using the inertial z vector \([0, 0, 1]\) instead of \(\mathbf{\omega}_{P/N}\). The computed required inertial spacecraft velocity and maneuver time are written to the DesiredVelocityMsgPayload output message.
Message Connection Descriptions
The following table lists all the module input and output messages. The module msg connection is set by the user from python. The msg type contains a link to the message structure definition, while the description provides information on what this message is used for.
Msg Variable Name |
Msg Type |
Description |
---|---|---|
lambertProblemInMsg |
lambert problem setup input message |
|
ephemerisInMsg |
ephemeris input message |
|
desiredVelocityOutMsg |
Desired velocity output message |
Algorithm
The required inertial spacecraft velocity is computed by:
where \(\mathbf{\omega}_{P/N}\) is the angular velocity of the planet fixed frame P w.r.t. the inertial frame N.
User Guide
The module is first initialized as follows:
module = lambertSurfaceRelativeVelocity.LambertSurfaceRelativeVelocity()
module.ModelTag = "lambertSurfaceRelativeVelocity"
module.setVRelativeDesired_S(np.array([0., 0., 10.])) # in surface frame (East-North-Up)
module.setTime(1000.)
unitTestSim.AddModelToTask(unitTaskName, module)
The input messages are then connected:
module.lambertProblemInMsg.subscribeTo(lambertProblemInMsg)
module.ephemerisInMsg.subscribeTo(ephemerisInMsg)
-
class LambertSurfaceRelativeVelocity : public SysModel
- #include <lambertSurfaceRelativeVelocity.h>
This module computes the inertial velocity corresponding to a given position and relative velocity to the celestial body surface.
Public Functions
-
LambertSurfaceRelativeVelocity()
This is the constructor for the module class. It sets default variable values and initializes the various parts of the model
-
~LambertSurfaceRelativeVelocity()
Module Destructor
-
void Reset(uint64_t currentSimNanos) override
This method is used to reset the module and checks that required input messages are connected.
- Parameters:
currentSimNanos – current simulation time in nano-seconds
-
void UpdateState(uint64_t currentSimNanos) override
This is the main method that gets called every time the module is updated. It computes the solution of Lambert’s problem.
- Parameters:
currentSimNanos – current simulation time in nano-seconds
-
void setTime(const double value)
setter for
time
-
inline double getTime() const
getter for
time
Public Members
-
ReadFunctor<LambertProblemMsgPayload> lambertProblemInMsg
lambert problem input message
-
ReadFunctor<EphemerisMsgPayload> ephemerisInMsg
ephemeris input message
-
Message<DesiredVelocityMsgPayload> desiredVelocityOutMsg
desired inertial velocity output message
-
BSKLogger bskLogger
BSK Logging.
Private Functions
-
void readMessages()
This method reads the input messages each call of updateState.
-
void writeMessages(uint64_t currentSimNanos)
This method writes the output messages each call of updateState
- Parameters:
currentSimNanos – current simulation time in nano-seconds
-
LambertSurfaceRelativeVelocity()