Satellite Configuration
Satellites are the basic unit of agent in the environment. Four things must be specified in subclasses of Satellite:
The
observation_spec, which defines the satellite’s observation.The
action_spec, which defines the satellite’s actions.The
dyn_type, which selects the underlying dynamics model used in simulation.The
fsw_type, which selects the underlying flight software model.
A very simple satellite is defined below:
[1]:
from bsk_rl import sats, act, obs, scene, data, SatelliteTasking
from bsk_rl.sim import dyn, fsw
import numpy as np
from Basilisk.architecture import bskLogging
bskLogging.setDefaultLogLevel(bskLogging.BSK_WARNING)
class SimpleSatellite(sats.Satellite):
observation_spec = [obs.Time()] # Passed as list of instantiated classes
action_spec = [act.Drift()]
dyn_type = dyn.BasicDynamicsModel # Passed as a type
fsw_type = fsw.BasicFSWModel
Setting Satellite Parameters
Without instantiating the satellite, parameters that can be set in the various models can be inspected.
[2]:
SimpleSatellite.default_sat_args()
[2]:
{'hs_min': 0.0,
'maxCounterValue': 4,
'thrMinFireTime': 0.02,
'desatAttitude': 'sun',
'controlAxes_B': [1, 0, 0, 0, 1, 0, 0, 0, 1],
'thrForceSign': 1,
'K': 7.0,
'Ki': -1,
'P': 35.0,
'utc_init': 'this value will be set by the world model',
'batteryStorageCapacity': 288000.0,
'storedCharge_Init': <function bsk_rl.sim.dyn.base.BasicDynamicsModel.<lambda>()>,
'disturbance_vector': None,
'dragCoeff': 2.2,
'panelArea': 1.0,
'basePowerDraw': 0.0,
'wheelSpeeds': <function bsk_rl.sim.dyn.base.BasicDynamicsModel.<lambda>()>,
'maxWheelSpeed': inf,
'u_max': 0.2,
'rwBasePower': 0.4,
'rwMechToElecEfficiency': 0.0,
'rwElecToMechEfficiency': 0.5,
'panelEfficiency': 0.2,
'nHat_B': array([ 0, 0, -1]),
'mass': 330,
'width': 1.38,
'depth': 1.04,
'height': 1.58,
'sigma_init': <function bsk_rl.sim.dyn.base.DynamicsModel.<lambda>()>,
'omega_init': <function bsk_rl.sim.dyn.base.DynamicsModel.<lambda>()>,
'rN': None,
'vN': None,
'oe': <function bsk_rl.utils.orbital.random_orbit(i: Optional[float] = None, a: Optional[float] = 6871, e: float = 0, Omega: Optional[float] = None, omega: Optional[float] = None, f: Optional[float] = None, alt: float = None, r_body: float = 6371) -> Basilisk.utilities.orbitalMotion.ClassicElements>,
'mu': 398600436000000.0,
'min_orbital_radius': 6578136.6,
'thrusterPowerDraw': 0.0}
These parameters can be overriden when instantiating the satellite through the sat_args argument.
[3]:
sat = SimpleSatellite(
name="SimpleSat-1",
sat_args=dict(
mass=300, # Setting a constant value
dragCoeff=lambda: np.random.uniform(2.0, 2.4), # Setting a randomized value
),
)
Each time the simulation is reset, all of the function-based randomizers are called.
[4]:
sat.generate_sat_args() # Called by the environment on reset()
sat.sat_args
[4]:
{'hs_min': 0.0,
'maxCounterValue': 4,
'thrMinFireTime': 0.02,
'desatAttitude': 'sun',
'controlAxes_B': [1, 0, 0, 0, 1, 0, 0, 0, 1],
'thrForceSign': 1,
'K': 7.0,
'Ki': -1,
'P': 35.0,
'utc_init': 'this value will be set by the world model',
'batteryStorageCapacity': 288000.0,
'storedCharge_Init': 117894.35242845089,
'disturbance_vector': None,
'dragCoeff': 2.2003040261004676,
'panelArea': 1.0,
'basePowerDraw': 0.0,
'wheelSpeeds': array([ 303.86532023, -1263.44281535, 775.1438249 ]),
'maxWheelSpeed': inf,
'u_max': 0.2,
'rwBasePower': 0.4,
'rwMechToElecEfficiency': 0.0,
'rwElecToMechEfficiency': 0.5,
'panelEfficiency': 0.2,
'nHat_B': array([ 0, 0, -1]),
'mass': 300,
'width': 1.38,
'depth': 1.04,
'height': 1.58,
'sigma_init': array([0.52403638, 0.5708161 , 0.42036256]),
'omega_init': array([7.21015559e-05, 6.13640137e-05, 2.50006692e-05]),
'rN': None,
'vN': None,
'oe': <Basilisk.utilities.orbitalMotion.ClassicElements at 0x7fb4d7625620>,
'mu': 398600436000000.0,
'min_orbital_radius': 6578136.6,
'thrusterPowerDraw': 0.0}
As a result, each episode will have different randomized parameters:
[5]:
for _ in range(3):
sat.generate_sat_args() # Called by the environment on reset()
print("New value of dragCoeff:", sat.sat_args["dragCoeff"])
New value of dragCoeff: 2.217260704451405
New value of dragCoeff: 2.209183987665481
New value of dragCoeff: 2.1712214574067996
The Observation Specification
A variety of observation elements are available for satellites. Full documentation can be found here, but some commonly used elements are explored below.
Info: In these examples, obs_type=dict is passed to the Satellite constructor so that the observation is human readable. While some RL libraries support dictionary-based observations, the default return type - the numpy array format - is more typically used.
Satellite Properties
The most common type of observations is introspective; i.e. what is my current state? Any @property in the dyn_type or fsw_type of the satellite can be accessed using SatProperties.
[6]:
class SatPropsSatellite(sats.Satellite):
observation_spec = [
obs.SatProperties(
# At a minimum, specify the property to observe
dict(prop="wheel_speeds"),
# You can specify the module to use for the observation, but it is not necessary
# if only one module has for the property
dict(prop="battery_charge_fraction", module="dynamics"),
# Properties can be normalized by some constant. This is generally desirable
# for RL algorithms to keep values around [-1, 1].
dict(prop="r_BN_P", norm=7e6),
)
]
action_spec = [act.Drift()]
dyn_type = dyn.BasicDynamicsModel
fsw_type = fsw.BasicFSWModel
env = SatelliteTasking(
satellite=SatPropsSatellite("PropSat-1", {}, obs_type=dict),
log_level="CRITICAL",
)
observation, _ = env.reset()
observation
[6]:
{'sat_props': {'wheel_speeds': array([-29.48349437, -78.02413431, 9.57918027]),
'battery_charge_fraction': 0.8554855496313408,
'r_BN_P_normd': array([-0.47012008, -0.84749177, -0.15565113])}}
In some cases, you may want to access a bespoke property that is not natively implemented in a model. To do that, simply extend the model with your desired property.
[7]:
class BespokeFSWModel(fsw.BasicFSWModel):
@property
def meaning_of_life(self):
return 42
class BespokeSatPropsSatellite(sats.Satellite):
observation_spec = [
obs.SatProperties(dict(prop="meaning_of_life"))
]
action_spec = [act.Drift()]
dyn_type = dyn.BasicDynamicsModel
fsw_type = BespokeFSWModel
env = SatelliteTasking(
satellite=BespokeSatPropsSatellite("BespokeSat-1", {}, obs_type=dict),
log_level="CRITICAL",
)
observation, _ = env.reset()
observation
[7]:
{'sat_props': {'meaning_of_life': 42.0}}
Alternatively, define the property with a function that takes the satellite object as an argument.
[8]:
class CustomSatPropsSatellite(sats.Satellite):
observation_spec = [
obs.SatProperties(dict(prop="meaning_of_life", fn=lambda sat: 42))
]
action_spec = [act.Drift()]
dyn_type = dyn.BasicDynamicsModel
fsw_type = fsw.BasicFSWModel
env = SatelliteTasking(
satellite=CustomSatPropsSatellite("BespokeSat-1", {}, obs_type=dict),
log_level="CRITICAL",
)
observation, _ = env.reset()
observation
[8]:
{'sat_props': {'meaning_of_life': 42.0}}
Opportunity Properties
Another common input to the observation is information about upcoming locations that are being accessed by the satellite. Currently, these include ground stations for downlink and targets for imaging, but OpportunityProperties will work with any location added by add_location_for_access_checking. In these examples,
[9]:
class OppPropsSatellite(sats.ImagingSatellite):
observation_spec = [
obs.OpportunityProperties(
# Properties can be added by some default names
dict(prop="priority"),
# They can also be normalized
dict(prop="opportunity_open", norm=5700.0),
# Or they can be specified by an arbitrary function
dict(fn=lambda sat, opp: opp["r_LP_P"] + 42),
n_ahead_observe=3,
)
]
action_spec = [act.Drift()]
dyn_type = dyn.ImagingDynModel
fsw_type = fsw.ImagingFSWModel
env = SatelliteTasking(
satellite=OppPropsSatellite("OppSat-1", {}, obs_type=dict),
scenario=scene.UniformTargets(1000),
rewarder=data.UniqueImageReward(),
log_level="CRITICAL",
)
observation, _ = env.reset()
observation
[9]:
{'target': {'target_0': {'priority': 0.11902358519484035,
'opportunity_open_normd': np.float64(0.0),
'prop_2': array([ 4127615.34841432, 4631966.101943 , -1479499.77215745])},
'target_1': {'priority': 0.8790039352531174,
'opportunity_open_normd': np.float64(0.0),
'prop_2': array([ 4224667.72388228, 4596158.61346436, -1307197.86200259])},
'target_2': {'priority': 0.6092693655237419,
'opportunity_open_normd': 0.0015920631655608859,
'prop_2': array([4714145.5722346 , 4191856.7382797 , -941522.22959118])}}}
The Action Specification
The action specification works similarly to observation specification. A list of actions is set in the class definition of the satellite.
[14]:
class ActionSatellite(sats.Satellite):
observation_spec = [obs.Time()]
action_spec = [
# If action duration is not set, the environment max_step_duration will be used;
# however, being explicit is always preferable
act.Charge(duration=120.0),
act.Desat(duration=60.0),
# One action can be included multiple time, if different settings are desired
act.Charge(duration=600.0,),
]
dyn_type = dyn.BasicDynamicsModel
fsw_type = fsw.BasicFSWModel
env = SatelliteTasking(
satellite=ActionSatellite("ActSat-1", {}, obs_type=dict),
log_level="INFO",
)
env.reset()
# Try each action; index corresponds to the order of addition
_ =env.step(0)
_ =env.step(1)
_ =env.step(2)
2026-02-03 17:27:41,273 WARNING Creating logger for new env on PID=5258. Old environments in process may now log times incorrectly.
2026-02-03 17:27:41,275 gym INFO Resetting environment with seed=2971957031
2026-02-03 17:27:41,334 gym INFO <0.00> Environment reset
2026-02-03 17:27:41,335 gym INFO <0.00> === STARTING STEP ===
2026-02-03 17:27:41,335 sats.satellite.ActSat-1 INFO <0.00> ActSat-1: action_charge tasked for 120.0 seconds
2026-02-03 17:27:41,336 sats.satellite.ActSat-1 INFO <0.00> ActSat-1: setting timed terminal event at 120.0
2026-02-03 17:27:41,344 sats.satellite.ActSat-1 INFO <120.00> ActSat-1: timed termination at 120.0 for action_charge
2026-02-03 17:27:41,344 data.base INFO <120.00> Total reward: {}
2026-02-03 17:27:41,345 comm.communication INFO <120.00> Optimizing data communication between all pairs of satellites
2026-02-03 17:27:41,346 sats.satellite.ActSat-1 INFO <120.00> ActSat-1: Satellite ActSat-1 requires retasking
2026-02-03 17:27:41,347 gym INFO <120.00> Step reward: 0.0
2026-02-03 17:27:41,348 gym INFO <120.00> === STARTING STEP ===
2026-02-03 17:27:41,348 sats.satellite.ActSat-1 INFO <120.00> ActSat-1: action_desat tasked for 60.0 seconds
2026-02-03 17:27:41,349 sats.satellite.ActSat-1 INFO <120.00> ActSat-1: setting timed terminal event at 180.0
2026-02-03 17:27:41,354 sats.satellite.ActSat-1 INFO <180.00> ActSat-1: timed termination at 180.0 for action_desat
2026-02-03 17:27:41,354 data.base INFO <180.00> Total reward: {}
2026-02-03 17:27:41,354 comm.communication INFO <180.00> Optimizing data communication between all pairs of satellites
2026-02-03 17:27:41,355 sats.satellite.ActSat-1 INFO <180.00> ActSat-1: Satellite ActSat-1 requires retasking
2026-02-03 17:27:41,357 gym INFO <180.00> Step reward: 0.0
2026-02-03 17:27:41,357 gym INFO <180.00> === STARTING STEP ===
2026-02-03 17:27:41,358 sats.satellite.ActSat-1 INFO <180.00> ActSat-1: action_charge tasked for 600.0 seconds
2026-02-03 17:27:41,358 sats.satellite.ActSat-1 INFO <180.00> ActSat-1: setting timed terminal event at 780.0
2026-02-03 17:27:41,390 sats.satellite.ActSat-1 INFO <780.00> ActSat-1: timed termination at 780.0 for action_charge
2026-02-03 17:27:41,390 data.base INFO <780.00> Total reward: {}
2026-02-03 17:27:41,391 comm.communication INFO <780.00> Optimizing data communication between all pairs of satellites
2026-02-03 17:27:41,391 sats.satellite.ActSat-1 INFO <780.00> ActSat-1: Satellite ActSat-1 requires retasking
2026-02-03 17:27:41,393 gym INFO <780.00> Step reward: 0.0
As with the observations, properties exist to help understand the actions available.
[15]:
env.action_space
[15]:
Discrete(3)
[16]:
env.unwrapped.satellite.action_description
[16]:
['action_charge', 'action_desat', 'action_charge']
Some actions take additional configurations, add multiple actions to the satellite, and/or have “special” features that are useful for manually interacting with the environment. For example, the imaging action can add an arbitrary number of actions corresponding to upcoming targets and process the name of a target directly instead of operating by action index.
[17]:
class ImageActSatellite(sats.ImagingSatellite):
observation_spec = [obs.Time()]
action_spec = [
# Set the number of upcoming targets to consider
act.Image(n_ahead_image=3)
]
dyn_type = dyn.ImagingDynModel
fsw_type = fsw.ImagingFSWModel
env = SatelliteTasking(
satellite=ImageActSatellite("ActSat-2", {}),
scenario=scene.UniformTargets(1000),
rewarder=data.UniqueImageReward(),
log_level="INFO",
)
env.reset()
env.unwrapped.satellite.action_description
2026-02-03 17:27:41,411 WARNING Creating logger for new env on PID=5258. Old environments in process may now log times incorrectly.
2026-02-03 17:27:41,412 gym INFO Resetting environment with seed=3109538148
2026-02-03 17:27:41,414 scene.targets INFO Generating 1000 targets
2026-02-03 17:27:41,480 gym INFO <0.00> Environment reset
[17]:
['action_image_0', 'action_image_1', 'action_image_2']
Demonstrating the action overload feature, we task the satellite based on target name. While this is not part of the official Gym API, we find it useful in certain cases.
[18]:
target = env.unwrapped.satellite.find_next_opportunities(n=10)[9]["object"]
_ = env.step(target)
2026-02-03 17:27:41,487 sats.satellite.ActSat-2 INFO <0.00> ActSat-2: Finding opportunity windows from 0.00 to 600.00 seconds
2026-02-03 17:27:41,525 sats.satellite.ActSat-2 INFO <0.00> ActSat-2: Finding opportunity windows from 600.00 to 1200.00 seconds
2026-02-03 17:27:41,569 gym INFO <0.00> === STARTING STEP ===
2026-02-03 17:27:41,569 act.discrete_actions WARNING <0.00> Action 'Target(tgt-180)' is not an integer. Will attempt to use compatible set_action_override method.
2026-02-03 17:27:41,570 sats.satellite.ActSat-2 INFO <0.00> ActSat-2: Target(tgt-180) tasked for imaging
2026-02-03 17:27:41,571 sats.satellite.ActSat-2 INFO <0.00> ActSat-2: Target(tgt-180) window enabled: 668.1 to 783.0
2026-02-03 17:27:41,571 sats.satellite.ActSat-2 INFO <0.00> ActSat-2: setting timed terminal event at 783.0
2026-02-03 17:27:41,659 sats.satellite.ActSat-2 INFO <671.00> ActSat-2: imaged Target(tgt-180)
2026-02-03 17:27:41,660 data.base INFO <671.00> Total reward: {'ActSat-2': 0.5228232429704075}
2026-02-03 17:27:41,661 comm.communication INFO <671.00> Optimizing data communication between all pairs of satellites
2026-02-03 17:27:41,661 sats.satellite.ActSat-2 INFO <671.00> ActSat-2: Satellite ActSat-2 requires retasking
2026-02-03 17:27:41,663 gym INFO <671.00> Step reward: 0.5228232429704075