Fault Environment Example
This tutorial demonstrates how to configure and use a simple BSK-RL environment to model faults in a system with four reaction wheels (RWs).
Load Modules
[1]:
import numpy as np
from typing import Iterable
from Basilisk.architecture import bskLogging
from Basilisk.utilities import macros, orbitalMotion, simIncludeRW
from Basilisk.simulation import reactionWheelStateEffector
from Basilisk.fswAlgorithms import rwNullSpace
from Basilisk.architecture import messaging
from bsk_rl import SatelliteTasking, act, data, obs, scene, sats
from bsk_rl.sim import dyn, fsw, world
from bsk_rl.utils.orbital import random_orbit, random_unit_vector
from bsk_rl.utils.functional import default_args
bskLogging.setDefaultLogLevel(bskLogging.BSK_WARNING)
Making Faults Cases
Creating a fault base class and defining individual fault types enables modeling multiple kinds of faults within a single satellite. In this example, a power draw limit is applied to RWs, causing it to operate at reduced speed compared to nominal conditions. By default, while a torque limit is enforced, there are no restrictions on power draw. time
is used to define the time at which the fault occurs, reducedLimit
specifies the power draw limit in watts, and wheel_Idx
indicates which
RW is affected by the fault. It can be set to a value from 1 to 4, or to all to apply the fault to every RW.
[2]:
class FaultObject:
def __init__(self, name, time, verbose=True, **kwargs):
self.name = name
self.time = time
self.verbose = verbose
self.message = None
self.message_printed = False
def execute(self, satellite):
raise NotImplementedError(
f"{self.name} does not have a custom execute function!"
)
def print_message(self, message, satellite):
if not self.message_printed:
satellite.logger.info(message)
self.message_printed = True
def addFaultToSimulation(self, satellite, listIdx):
self.uniqueFaultIdx = listIdx # Index in the faultList array.
satellite.simulator.createNewEvent(
f"add{self.name}Fault",
satellite.dynamics.dyn_rate,
True,
[f"self.TotalSim.CurrentNanos>={self.time}"],
[
f"self.faultList[{self.uniqueFaultIdx}].execute({satellite._satellite_command})",
f"self.faultList[{self.uniqueFaultIdx}].print({satellite._satellite_command})",
],
)
class RwPowerFault(FaultObject):
def __init__(self, name, time, reducedLimit, wheelIdx):
super().__init__(name, time)
self.reducedLimit = reducedLimit
if isinstance(wheelIdx, float):
# int needed around wheelIdx because np.random.choice doesn't return
# a type int, and the index will not register in execute without it.
self.wheelIdx = int(wheelIdx)
elif isinstance(wheelIdx, int) or wheelIdx == "all":
# option to trigger the fault in all wheels reflecting a larger power issue
self.wheelIdx = wheelIdx
else:
raise ValueError(
"Fault parameter 'wheelIdx' must either be a number corresponding to a reaction wheel or the string 'all'"
)
def execute(self, satellite):
dynModels = satellite.dynamics
if self.wheelIdx == 1:
dynModels.rwFactory.rwList["RW1"].P_max = self.reducedLimit
elif self.wheelIdx == 2:
dynModels.rwFactory.rwList["RW2"].P_max = self.reducedLimit
elif self.wheelIdx == 3:
dynModels.rwFactory.rwList["RW3"].P_max = self.reducedLimit
elif self.wheelIdx == 4:
dynModels.rwFactory.rwList["RW4"].P_max = self.reducedLimit
elif self.wheelIdx == "all":
# option to trigger the fault in all wheels (not supported for all fault types)
dynModels.rwFactory.rwList["RW1"].P_max = self.reducedLimit
dynModels.rwFactory.rwList["RW2"].P_max = self.reducedLimit
dynModels.rwFactory.rwList["RW3"].P_max = self.reducedLimit
dynModels.rwFactory.rwList["RW4"].P_max = self.reducedLimit
def print(self, satellite):
if self.wheelIdx == "all":
self.message = f"RW Power Fault: all RW's power limit reduced to {self.reducedLimit} Watts at {self.time*macros.NANO2MIN} minutes!"
else:
self.message = f"RW Power Fault: RW{self.wheelIdx}'s power limit reduced to {self.reducedLimit} Watts at {self.time*macros.NANO2MIN} minutes!"
super().print_message(self.message, satellite)
Configure the Simulation Models
Dynamics model:
FullFeaturedDynModel
is used as the base class, andsetup_reaction_wheel_dyn_effector
is overridden to support four RWs. Two additional properties are added: the angle between the Sun and the solar panel, and the speed fraction of each RW.
[3]:
class CustomDynModel(dyn.FullFeaturedDynModel):
@property
def solar_angle_norm(self) -> float:
sun_vec_N = (
self.world.gravFactory.spiceObject.planetStateOutMsgs[self.world.sun_index]
.read()
.PositionVector
)
sun_vec_N_hat = sun_vec_N / np.linalg.norm(sun_vec_N)
solar_panel_vec_B = np.array([0, 0, -1])
mat = np.transpose(self.BN)
solar_panel_vec_N = np.matmul(mat, solar_panel_vec_B)
error_angle = np.arccos(np.dot(solar_panel_vec_N, sun_vec_N_hat))
return error_angle / np.pi
@property
def wheel_speeds_frac(self):
rw_speed = self.wheel_speeds
return rw_speed[0:4] / (self.maxWheelSpeed * macros.rpm2radsec)
@default_args(
wheelSpeeds=lambda: np.random.uniform(-1500, 1500, 4),
maxWheelSpeed=np.inf,
u_max=0.200,
)
def setup_reaction_wheel_dyn_effector(
self,
wheelSpeeds: Iterable[float],
maxWheelSpeed: float,
u_max: float,
priority: int = 997,
**kwargs,
) -> None:
"""Set the RW state effector parameters.
Args:
wheelSpeeds: Initial speeds of each wheel [RPM]
maxWheelSpeed: Failure speed for wheels [RPM]
u_max: Torque producible by wheel [N*m]
priority: Model priority.
kwargs: Ignored
"""
def balancedHR16Triad(
useRandom=False, randomBounds=(-400, 400), wheelSpeeds=[500, 500, 500, 500]
):
"""Create a set of three HR16 reaction wheels.
Args:
useRandom: Use random values for wheel speeds.
randomBounds: Bounds for random wheel speeds.
wheelSpeeds: Fixed wheel speeds.
Returns:
tuple:
* **rwStateEffector**: Reaction wheel state effector instance.
* **rwFactory**: Factory containing defined reaction wheels.
* **wheelSpeeds**: Wheel speeds.
"""
rwFactory = simIncludeRW.rwFactory()
if useRandom:
wheelSpeeds = np.random.uniform(randomBounds[0], randomBounds[1], 4)
c = 3 ** (-0.5)
rwFactory.create(
"Honeywell_HR16",
[1, 0, 0],
maxMomentum=50.0,
Omega=wheelSpeeds[0],
)
rwFactory.create(
"Honeywell_HR16",
[0, 1, 0],
maxMomentum=50.0,
Omega=wheelSpeeds[1],
)
rwFactory.create(
"Honeywell_HR16",
[0, 0, 1],
maxMomentum=50.0,
Omega=wheelSpeeds[2],
)
rwFactory.create(
"Honeywell_HR16",
[c, c, c],
maxMomentum=50.0,
Omega=wheelSpeeds[3],
)
rwStateEffector = reactionWheelStateEffector.ReactionWheelStateEffector()
return rwStateEffector, rwFactory, wheelSpeeds
self.maxWheelSpeed = maxWheelSpeed
self.rwStateEffector, self.rwFactory, _ = balancedHR16Triad(
useRandom=False,
wheelSpeeds=wheelSpeeds,
)
for RW in self.rwFactory.rwList.values():
RW.u_max = u_max
self.rwStateEffector.ModelTag = "ReactionWheels"
self.rwFactory.addToSpacecraft(
self.scObject.ModelTag, self.rwStateEffector, self.scObject
)
self.simulator.AddModelToTask(
self.task_name, self.rwStateEffector, ModelPriority=priority
)
self.Gs = np.array(
[
[1, 0, 0, 1 / np.sqrt(3)], # RW1 and RW4 x-components
[0, 1, 0, 1 / np.sqrt(3)], # RW2 and RW4 y-components
[0, 0, 1, 1 / np.sqrt(3)], # RW3 and RW4 z-components
]
)
Flight software model: A custom flight software model is defined to support four RWs. It is based on the
SteeringImagerFSWModel
, with the main modification being the addition of therwNullSpace
module. Due to the redundancy of having four RWs, there are infinitely many solutions for mapping the required body control torque to individual RW torques. To address this, once the control torque is computed, the RW null space is used to decelerate the wheels without applying additional torque to the spacecraft.
[4]:
class CustomSteeringImagerFSWModel(fsw.SteeringImagerFSWModel):
def __init__(self, *args, **kwargs) -> None:
"""Convenience type that combines the imaging FSW model with MRP steering for four reaction wheels."""
super().__init__(*args, **kwargs)
def _set_config_msgs(self) -> None:
super()._set_config_msgs()
self._set_rw_constellation_msg()
def _set_rw_constellation_msg(self) -> None:
"""Set the reaction wheel constellation message."""
rwConstellationConfig = messaging.RWConstellationMsgPayload()
rwConstellationConfig.numRW = self.dynamics.rwFactory.getNumOfDevices()
rwConfigElementList = []
for i in range(4):
rwConfigElementMsg = messaging.RWConfigElementMsgPayload()
rwConfigElementMsg.gsHat_B = self.dynamics.Gs[:, i]
rwConfigElementMsg.Js = self.dynamics.rwFactory.rwList[f"RW{i+1}"].Js
rwConfigElementMsg.uMax = self.dynamics.rwFactory.rwList[f"RW{i+1}"].u_max
rwConfigElementList.append(rwConfigElementMsg)
rwConstellationConfig.reactionWheels = rwConfigElementList
self.rwConstellationConfigInMsg = messaging.RWConstellationMsg().write(
rwConstellationConfig
)
def _set_gateway_msgs(self) -> None:
"""Create C-wrapped gateway messages."""
self.attRefMsg = messaging.AttRefMsg_C()
self.attGuidMsg = messaging.AttGuidMsg_C()
self._zero_gateway_msgs()
# connect gateway FSW effector command msgs with the dynamics
self.dynamics.rwStateEffector.rwMotorCmdInMsg.subscribeTo(
self.rwNullSpace.rwMotorTorqueOutMsg
)
self.dynamics.thrusterSet.cmdsInMsg.subscribeTo(
self.thrDump.thrusterOnTimeOutMsg
)
class MRPControlTask(fsw.SteeringImagerFSWModel.MRPControlTask):
def _create_module_data(self) -> None:
super()._create_module_data()
self.rwNullSpace = self.fsw.rwNullSpace = rwNullSpace.rwNullSpace()
self.rwNullSpace.ModelTag = "rwNullSpace"
def _setup_fsw_objects(self, **kwargs) -> None:
super()._setup_fsw_objects(**kwargs)
self.set_rw_null_space(**kwargs)
@default_args(OmegaGain=0.3)
def set_rw_null_space(
self,
OmegaGain: float,
**kwargs,
) -> None:
"""Define the null space to slow down the wheels."""
self.rwNullSpace.rwMotorTorqueInMsg.subscribeTo(
self.rwMotorTorque.rwMotorTorqueOutMsg
)
self.rwNullSpace.rwSpeedsInMsg.subscribeTo(
self.fsw.dynamics.rwStateEffector.rwSpeedOutMsg
)
self.rwNullSpace.rwConfigInMsg.subscribeTo(
self.fsw.rwConstellationConfigInMsg
)
self.rwNullSpace.OmegaGain = OmegaGain
self._add_model_to_task(self.rwNullSpace, priority=1193)
Configure the Satellite
-
SatProperties: Body angular velocity, instrument pointing direction, body position, body velocity, battery charge (properties in flight software model or dynamics model). Also, customized dynamics property in CustomDynModel above: Angle between the sun and the solar panel and four RW speed fraction.
OpportunityProperties: Target’s priority, normalized location, and target angle (upcoming 32 targets).
Time: Simulation time.
Eclipse: Next eclipse start and end times.
-
Desat: Manage momentum for the RWs for 60 seconds.
Charge: Enter a sun-pointing charging mode for 60 seconds.
Image: Image target from upcoming 32 targets
The fault is introduced by overriding the reset_post_sim_init
function. The probability of the fault occurring can be specified using the fault_chance
argument, and the time of occurrence can be set using the fault_time
argument.
[5]:
class CustomSatComposed(sats.ImagingSatellite):
observation_spec = [
obs.SatProperties(
dict(prop="omega_BP_P", norm=0.03),
dict(prop="c_hat_P"),
dict(prop="r_BN_P", norm=orbitalMotion.REQ_EARTH * 1e3),
dict(prop="v_BN_P", norm=7616.5),
dict(prop="battery_charge_fraction"),
dict(prop="solar_angle_norm"),
dict(prop="wheel_speeds_frac"),
),
obs.OpportunityProperties(
dict(prop="priority"),
dict(prop="r_LP_P", norm=orbitalMotion.REQ_EARTH * 1e3),
dict(prop="target_angle", norm=np.pi),
type="target",
n_ahead_observe=32,
),
obs.Time(),
obs.Eclipse(norm=5700),
]
action_spec = [
act.Desat(duration=60.0),
act.Charge(duration=60.0),
act.Image(n_ahead_image=32),
]
# Modified the constructor to include the fault chance and list
def __init__(self, *args, fault_chance=0, fault_time=0.0, **kwargs) -> None:
super().__init__(*args, **kwargs)
self.fault_chance = fault_chance
self.fault_time = fault_time
self.faultList = [] # List to store faults
def reset_post_sim_init(self) -> None:
super().reset_post_sim_init()
if np.random.random() < self.fault_chance:
powerFault = RwPowerFault(
"rwPowerLimited", self.fault_time, reducedLimit=1.0, wheelIdx=1
)
self.faultList = [powerFault]
self.simulator.faultList = self.faultList
for i in range(len(self.faultList)):
self.faultList[i].addFaultToSimulation(self, i)
dyn_type = CustomDynModel
fsw_type = CustomSteeringImagerFSWModel
Configure Satellite Pareameters
When instantiating a satellite, these parameters can be overriden with a constant or rerandomized every time the environment is reset using the sat_args
dictionary.
[6]:
dataStorageCapacity = 20 * 8e6 * 100
batteryStorageCapacity = 80.0 * 3600 * 2
sat_args = CustomSatComposed.default_sat_args(
oe=random_orbit,
imageAttErrorRequirement=0.01,
imageRateErrorRequirement=0.01,
batteryStorageCapacity=batteryStorageCapacity,
storedCharge_Init=lambda: np.random.uniform(0.4, 1.0) * batteryStorageCapacity,
u_max=0.2, # More realistic values than 1.0
K1=0.5, # Updated value to have smooth and more predictable control
nHat_B=np.array([0, 0, -1]),
imageTargetMinimumElevation=np.radians(45),
rwBasePower=20,
maxWheelSpeed=1500,
storageInit=lambda: np.random.randint(
0 * dataStorageCapacity,
0.01 * dataStorageCapacity,
),
wheelSpeeds=lambda: np.random.uniform(-900, 900, 4),
disturbance_vector=lambda: random_unit_vector(),
)
# Make the satellites
satellites = []
satellites.append(
CustomSatComposed(
"EO",
sat_args,
fault_chance=1.0,
fault_time=0.0, # Fault occurs at 0.0 (nano seconds)
)
)
Making and interacting the Environment
For this example, the single-agent SatelliteTasking environment is used. n addition to the configured satellite, the environment requires a scenario, which defines the context in which the satellite operates. In this case, the scenario uses UniformTargets
, placing 1000 uniformly distributed targets across the Earth’s surface. The environment also takes a rewarder, which defines how
data collected from the scenario is rewarded. Here, UniqueImageReward
is used, which assigns rewards based on the sum of the priorities of uniquely imaged targets in each episode.
[7]:
env = SatelliteTasking(
satellite=satellites,
terminate_on_time_limit=True,
world_type=world.GroundStationWorldModel,
world_args=world.GroundStationWorldModel.default_world_args(),
scenario=scene.UniformTargets(n_targets=1000),
rewarder=data.UniqueImageReward(),
sim_rate=0.5,
max_step_duration=300.0,
time_limit=95 * 60 * 3,
log_level="INFO",
failure_penalty=0,
# disable_env_checker=True, # For debugging
)
First, the environment is reset. A seed is provided to ensure reproducibility of the results; it can be removed to enable randomized testing.
[8]:
observation, info = env.reset(seed=1)
2025-07-24 00:11:24,719 gym INFO Resetting environment with seed=1
2025-07-24 00:11:24,721 scene.targets INFO Generating 1000 targets
2025-07-24 00:11:24,820 sats.satellite.EO INFO <0.00> EO: Finding opportunity windows from 0.00 to 17100.00 seconds
2025-07-24 00:11:25,135 gym INFO <0.00> Environment reset
The composed satellite action space returns a human-readable action map and each satellite has the same action space and similar observation space.
[9]:
print("Actions:", satellites[0].action_description)
print("States:", env.unwrapped.satellites[0].observation_description, "\n")
# Using the composed satellite features also provides a human-readable state:
for satellite in env.unwrapped.satellites:
for k, v in satellite.observation_builder.obs_dict().items():
print(f"{k}: {v}")
Actions: ['action_desat', 'action_charge', 'action_image_0', 'action_image_1', 'action_image_2', 'action_image_3', 'action_image_4', 'action_image_5', 'action_image_6', 'action_image_7', 'action_image_8', 'action_image_9', 'action_image_10', 'action_image_11', 'action_image_12', 'action_image_13', 'action_image_14', 'action_image_15', 'action_image_16', 'action_image_17', 'action_image_18', 'action_image_19', 'action_image_20', 'action_image_21', 'action_image_22', 'action_image_23', 'action_image_24', 'action_image_25', 'action_image_26', 'action_image_27', 'action_image_28', 'action_image_29', 'action_image_30', 'action_image_31']
States: [np.str_('sat_props.omega_BP_P_normd[0]'), np.str_('sat_props.omega_BP_P_normd[1]'), np.str_('sat_props.omega_BP_P_normd[2]'), np.str_('sat_props.c_hat_P[0]'), np.str_('sat_props.c_hat_P[1]'), np.str_('sat_props.c_hat_P[2]'), np.str_('sat_props.r_BN_P_normd[0]'), np.str_('sat_props.r_BN_P_normd[1]'), np.str_('sat_props.r_BN_P_normd[2]'), np.str_('sat_props.v_BN_P_normd[0]'), np.str_('sat_props.v_BN_P_normd[1]'), np.str_('sat_props.v_BN_P_normd[2]'), np.str_('sat_props.battery_charge_fraction'), np.str_('sat_props.solar_angle_norm'), np.str_('sat_props.wheel_speeds_frac[0]'), np.str_('sat_props.wheel_speeds_frac[1]'), np.str_('sat_props.wheel_speeds_frac[2]'), np.str_('target.target_0.priority'), np.str_('target.target_0.r_LP_P_normd[0]'), np.str_('target.target_0.r_LP_P_normd[1]'), np.str_('target.target_0.r_LP_P_normd[2]'), np.str_('target.target_0.target_angle_normd'), np.str_('target.target_1.priority'), np.str_('target.target_1.r_LP_P_normd[0]'), np.str_('target.target_1.r_LP_P_normd[1]'), np.str_('target.target_1.r_LP_P_normd[2]'), np.str_('target.target_1.target_angle_normd'), np.str_('target.target_2.priority'), np.str_('target.target_2.r_LP_P_normd[0]'), np.str_('target.target_2.r_LP_P_normd[1]'), np.str_('target.target_2.r_LP_P_normd[2]'), np.str_('target.target_2.target_angle_normd'), np.str_('target.target_3.priority'), np.str_('target.target_3.r_LP_P_normd[0]'), np.str_('target.target_3.r_LP_P_normd[1]'), np.str_('target.target_3.r_LP_P_normd[2]'), np.str_('target.target_3.target_angle_normd'), np.str_('target.target_4.priority'), np.str_('target.target_4.r_LP_P_normd[0]'), np.str_('target.target_4.r_LP_P_normd[1]'), np.str_('target.target_4.r_LP_P_normd[2]'), np.str_('target.target_4.target_angle_normd'), np.str_('target.target_5.priority'), np.str_('target.target_5.r_LP_P_normd[0]'), np.str_('target.target_5.r_LP_P_normd[1]'), np.str_('target.target_5.r_LP_P_normd[2]'), np.str_('target.target_5.target_angle_normd'), np.str_('target.target_6.priority'), np.str_('target.target_6.r_LP_P_normd[0]'), np.str_('target.target_6.r_LP_P_normd[1]'), np.str_('target.target_6.r_LP_P_normd[2]'), np.str_('target.target_6.target_angle_normd'), np.str_('target.target_7.priority'), np.str_('target.target_7.r_LP_P_normd[0]'), np.str_('target.target_7.r_LP_P_normd[1]'), np.str_('target.target_7.r_LP_P_normd[2]'), np.str_('target.target_7.target_angle_normd'), np.str_('target.target_8.priority'), np.str_('target.target_8.r_LP_P_normd[0]'), np.str_('target.target_8.r_LP_P_normd[1]'), np.str_('target.target_8.r_LP_P_normd[2]'), np.str_('target.target_8.target_angle_normd'), np.str_('target.target_9.priority'), np.str_('target.target_9.r_LP_P_normd[0]'), np.str_('target.target_9.r_LP_P_normd[1]'), np.str_('target.target_9.r_LP_P_normd[2]'), np.str_('target.target_9.target_angle_normd'), np.str_('target.target_10.priority'), np.str_('target.target_10.r_LP_P_normd[0]'), np.str_('target.target_10.r_LP_P_normd[1]'), np.str_('target.target_10.r_LP_P_normd[2]'), np.str_('target.target_10.target_angle_normd'), np.str_('target.target_11.priority'), np.str_('target.target_11.r_LP_P_normd[0]'), np.str_('target.target_11.r_LP_P_normd[1]'), np.str_('target.target_11.r_LP_P_normd[2]'), np.str_('target.target_11.target_angle_normd'), np.str_('target.target_12.priority'), np.str_('target.target_12.r_LP_P_normd[0]'), np.str_('target.target_12.r_LP_P_normd[1]'), np.str_('target.target_12.r_LP_P_normd[2]'), np.str_('target.target_12.target_angle_normd'), np.str_('target.target_13.priority'), np.str_('target.target_13.r_LP_P_normd[0]'), np.str_('target.target_13.r_LP_P_normd[1]'), np.str_('target.target_13.r_LP_P_normd[2]'), np.str_('target.target_13.target_angle_normd'), np.str_('target.target_14.priority'), np.str_('target.target_14.r_LP_P_normd[0]'), np.str_('target.target_14.r_LP_P_normd[1]'), np.str_('target.target_14.r_LP_P_normd[2]'), np.str_('target.target_14.target_angle_normd'), np.str_('target.target_15.priority'), np.str_('target.target_15.r_LP_P_normd[0]'), np.str_('target.target_15.r_LP_P_normd[1]'), np.str_('target.target_15.r_LP_P_normd[2]'), np.str_('target.target_15.target_angle_normd'), np.str_('target.target_16.priority'), np.str_('target.target_16.r_LP_P_normd[0]'), np.str_('target.target_16.r_LP_P_normd[1]'), np.str_('target.target_16.r_LP_P_normd[2]'), np.str_('target.target_16.target_angle_normd'), np.str_('target.target_17.priority'), np.str_('target.target_17.r_LP_P_normd[0]'), np.str_('target.target_17.r_LP_P_normd[1]'), np.str_('target.target_17.r_LP_P_normd[2]'), np.str_('target.target_17.target_angle_normd'), np.str_('target.target_18.priority'), np.str_('target.target_18.r_LP_P_normd[0]'), np.str_('target.target_18.r_LP_P_normd[1]'), np.str_('target.target_18.r_LP_P_normd[2]'), np.str_('target.target_18.target_angle_normd'), np.str_('target.target_19.priority'), np.str_('target.target_19.r_LP_P_normd[0]'), np.str_('target.target_19.r_LP_P_normd[1]'), np.str_('target.target_19.r_LP_P_normd[2]'), np.str_('target.target_19.target_angle_normd'), np.str_('target.target_20.priority'), np.str_('target.target_20.r_LP_P_normd[0]'), np.str_('target.target_20.r_LP_P_normd[1]'), np.str_('target.target_20.r_LP_P_normd[2]'), np.str_('target.target_20.target_angle_normd'), np.str_('target.target_21.priority'), np.str_('target.target_21.r_LP_P_normd[0]'), np.str_('target.target_21.r_LP_P_normd[1]'), np.str_('target.target_21.r_LP_P_normd[2]'), np.str_('target.target_21.target_angle_normd'), np.str_('target.target_22.priority'), np.str_('target.target_22.r_LP_P_normd[0]'), np.str_('target.target_22.r_LP_P_normd[1]'), np.str_('target.target_22.r_LP_P_normd[2]'), np.str_('target.target_22.target_angle_normd'), np.str_('target.target_23.priority'), np.str_('target.target_23.r_LP_P_normd[0]'), np.str_('target.target_23.r_LP_P_normd[1]'), np.str_('target.target_23.r_LP_P_normd[2]'), np.str_('target.target_23.target_angle_normd'), np.str_('target.target_24.priority'), np.str_('target.target_24.r_LP_P_normd[0]'), np.str_('target.target_24.r_LP_P_normd[1]'), np.str_('target.target_24.r_LP_P_normd[2]'), np.str_('target.target_24.target_angle_normd'), np.str_('target.target_25.priority'), np.str_('target.target_25.r_LP_P_normd[0]'), np.str_('target.target_25.r_LP_P_normd[1]'), np.str_('target.target_25.r_LP_P_normd[2]'), np.str_('target.target_25.target_angle_normd'), np.str_('target.target_26.priority'), np.str_('target.target_26.r_LP_P_normd[0]'), np.str_('target.target_26.r_LP_P_normd[1]'), np.str_('target.target_26.r_LP_P_normd[2]'), np.str_('target.target_26.target_angle_normd'), np.str_('target.target_27.priority'), np.str_('target.target_27.r_LP_P_normd[0]'), np.str_('target.target_27.r_LP_P_normd[1]'), np.str_('target.target_27.r_LP_P_normd[2]'), np.str_('target.target_27.target_angle_normd'), np.str_('target.target_28.priority'), np.str_('target.target_28.r_LP_P_normd[0]'), np.str_('target.target_28.r_LP_P_normd[1]'), np.str_('target.target_28.r_LP_P_normd[2]'), np.str_('target.target_28.target_angle_normd'), np.str_('target.target_29.priority'), np.str_('target.target_29.r_LP_P_normd[0]'), np.str_('target.target_29.r_LP_P_normd[1]'), np.str_('target.target_29.r_LP_P_normd[2]'), np.str_('target.target_29.target_angle_normd'), np.str_('target.target_30.priority'), np.str_('target.target_30.r_LP_P_normd[0]'), np.str_('target.target_30.r_LP_P_normd[1]'), np.str_('target.target_30.r_LP_P_normd[2]'), np.str_('target.target_30.target_angle_normd'), np.str_('target.target_31.priority'), np.str_('target.target_31.r_LP_P_normd[0]'), np.str_('target.target_31.r_LP_P_normd[1]'), np.str_('target.target_31.r_LP_P_normd[2]'), np.str_('target.target_31.target_angle_normd'), np.str_('time'), np.str_('eclipse[0]'), np.str_('eclipse[1]')]
sat_props: {'omega_BP_P_normd': array([0.00137284, 0.00080893, 0.00185074]), 'c_hat_P': array([-0.94095395, -0.07120216, -0.3309621 ]), 'r_BN_P_normd': array([-0.76023893, -0.76226973, 0.03873832]), 'v_BN_P_normd': array([-0.74001565, 0.72585949, -0.23976204]), 'battery_charge_fraction': 0.48805353449026784, 'solar_angle_norm': np.float64(0.3675725758375922), 'wheel_speeds_frac': array([ 0.2222634 , -0.3546573 , 0.45374092])}
target: {'target_0': {'priority': 0.6797657443023485, 'r_LP_P_normd': array([-0.72304393, -0.69048255, 0.02100749]), 'target_angle_normd': np.float64(0.6357597658378449)}, 'target_1': {'priority': 0.1011278274566988, 'r_LP_P_normd': array([-0.8839314 , -0.46366914, -0.06063175]), 'target_angle_normd': np.float64(0.3764086411837673)}, 'target_2': {'priority': 0.6931851990942818, 'r_LP_P_normd': array([-0.92043412, -0.36952122, -0.12749548]), 'target_angle_normd': np.float64(0.3723877146688926)}, 'target_3': {'priority': 0.17225514293500632, 'r_LP_P_normd': array([-0.92565997, -0.37833103, -0.00438879]), 'target_angle_normd': np.float64(0.38981813759316086)}, 'target_4': {'priority': 0.5711709172856598, 'r_LP_P_normd': array([-0.96343073, -0.26718398, -0.02034567]), 'target_angle_normd': np.float64(0.3943146022248573)}, 'target_5': {'priority': 0.39915339691165386, 'r_LP_P_normd': array([-0.9832796 , -0.17545716, -0.04874432]), 'target_angle_normd': np.float64(0.39937897834300234)}, 'target_6': {'priority': 0.3659991252731889, 'r_LP_P_normd': array([-0.99415125, -0.07715346, -0.07556872]), 'target_angle_normd': np.float64(0.4078843692651548)}, 'target_7': {'priority': 0.8196046614443331, 'r_LP_P_normd': array([-0.99765329, -0.01207943, -0.06739442]), 'target_angle_normd': np.float64(0.4168294389284707)}, 'target_8': {'priority': 0.31321450974410614, 'r_LP_P_normd': array([-0.97449116, 0.1725315 , -0.1435265 ]), 'target_angle_normd': np.float64(0.4358647819265422)}, 'target_9': {'priority': 0.9484757208286156, 'r_LP_P_normd': array([-0.96031054, 0.17441228, -0.21767872]), 'target_angle_normd': np.float64(0.433242760838707)}, 'target_10': {'priority': 0.48592850306846924, 'r_LP_P_normd': array([-0.96853779, 0.21402263, -0.12699944]), 'target_angle_normd': np.float64(0.4426489488945429)}, 'target_11': {'priority': 0.6184129633885858, 'r_LP_P_normd': array([-0.96210743, 0.21701823, -0.16508293]), 'target_angle_normd': np.float64(0.4411215055325246)}, 'target_12': {'priority': 0.17947175160982998, 'r_LP_P_normd': array([-0.94017117, 0.243405 , -0.23839502]), 'target_angle_normd': np.float64(0.4427323667761162)}, 'target_13': {'priority': 0.7384995398085523, 'r_LP_P_normd': array([-0.80487741, 0.52282763, -0.28075545]), 'target_angle_normd': np.float64(0.48648454206124414)}, 'target_14': {'priority': 0.27114812998614257, 'r_LP_P_normd': array([-0.76729423, 0.58576762, -0.26102845]), 'target_angle_normd': np.float64(0.4977256880591026)}, 'target_15': {'priority': 0.602211552115518, 'r_LP_P_normd': array([-0.69808315, 0.6848033 , -0.20910371]), 'target_angle_normd': np.float64(0.5172281968118192)}, 'target_16': {'priority': 0.379803286768697, 'r_LP_P_normd': array([-0.49501598, 0.82573585, -0.27040613]), 'target_angle_normd': np.float64(0.5507581988576493)}, 'target_17': {'priority': 0.4436831213331952, 'r_LP_P_normd': array([-0.45042693, 0.86931897, -0.20347018]), 'target_angle_normd': np.float64(0.5625207407345922)}, 'target_18': {'priority': 0.7048706468084478, 'r_LP_P_normd': array([-0.21420724, 0.9326702 , -0.29024395]), 'target_angle_normd': np.float64(0.59373704837557)}, 'target_19': {'priority': 0.9285111717464954, 'r_LP_P_normd': array([-0.19966509, 0.94633197, -0.25414496]), 'target_angle_normd': np.float64(0.5980174335717613)}, 'target_20': {'priority': 0.6283839193934228, 'r_LP_P_normd': array([ 0.04079828, 0.96062029, -0.27485298]), 'target_angle_normd': np.float64(0.6314125127394534)}, 'target_21': {'priority': 0.1929743249397491, 'r_LP_P_normd': array([ 0.0355612 , 0.97627369, -0.21360027]), 'target_angle_normd': np.float64(0.6341742328673365)}, 'target_22': {'priority': 0.44341724161916973, 'r_LP_P_normd': array([ 0.11710105, 0.96569059, -0.23179522]), 'target_angle_normd': np.float64(0.6446733019141536)}, 'target_23': {'priority': 0.11836853522372437, 'r_LP_P_normd': array([ 0.34219224, 0.92570533, -0.16116486]), 'target_angle_normd': np.float64(0.6810789969475336)}, 'target_24': {'priority': 0.8270836989643272, 'r_LP_P_normd': array([ 0.37614852, 0.90638066, -0.19231846]), 'target_angle_normd': np.float64(0.6842502087329536)}, 'target_25': {'priority': 0.5185496026201819, 'r_LP_P_normd': array([ 0.38424706, 0.90105932, -0.20111263]), 'target_angle_normd': np.float64(0.6849377870859835)}, 'target_26': {'priority': 0.9675170836931263, 'r_LP_P_normd': array([ 0.38356319, 0.9111912 , -0.15036584]), 'target_angle_normd': np.float64(0.6878383017756565)}, 'target_27': {'priority': 0.9065897890064923, 'r_LP_P_normd': array([ 0.55753272, 0.82426831, -0.09868644]), 'target_angle_normd': np.float64(0.7179839245481688)}, 'target_28': {'priority': 0.9282669521531632, 'r_LP_P_normd': array([ 0.62887363, 0.76646723, -0.13056009]), 'target_angle_normd': np.float64(0.7278214487998897)}, 'target_29': {'priority': 0.07379201140065461, 'r_LP_P_normd': array([ 0.83349796, 0.55251892, -0.00199665]), 'target_angle_normd': np.float64(0.7770010755992804)}, 'target_30': {'priority': 0.010627938976362383, 'r_LP_P_normd': array([ 0.87933586, 0.46953401, -0.07941194]), 'target_angle_normd': np.float64(0.7821048162611637)}, 'target_31': {'priority': 0.13642904696262903, 'r_LP_P_normd': array([ 0.90564527, 0.41905752, -0.06478763]), 'target_angle_normd': np.float64(0.7904117166194159)}}
time: 0.0
eclipse: [np.float64(0.7684210526315789), np.float64(0.14210526315789473)]
The simulation runs until either the battery is depleted, a RW exceeds its maximum speed (both considered failures), or a timeout occurs (which simply stops the simulation).
[10]:
total_reward = 0.0
while True:
observation, reward, terminated, truncated, info = env.step(
env.action_space.sample()
)
total_reward += reward
if terminated or truncated:
print("Episode complete.")
break
print("Total reward:", total_reward)
2025-07-24 00:11:25,149 gym INFO <0.00> === STARTING STEP ===
2025-07-24 00:11:25,150 sats.satellite.EO INFO <0.00> EO: target index 25 tasked
2025-07-24 00:11:25,151 sats.satellite.EO INFO <0.00> EO: Target(tgt-760) tasked for imaging
2025-07-24 00:11:25,153 sats.satellite.EO INFO <0.00> EO: Target(tgt-760) window enabled: 2273.6 to 2359.5
2025-07-24 00:11:25,153 sats.satellite.EO INFO <0.00> EO: setting timed terminal event at 2359.5
2025-07-24 00:11:25,154 sats.satellite.EO INFO <0.00> EO: RW Power Fault: RW1's power limit reduced to 1.0 Watts at 0.0 minutes!
2025-07-24 00:11:25,156 sats.satellite.EO INFO <0.50> EO: imaged Target(tgt-760)
2025-07-24 00:11:25,158 data.base INFO <0.50> Total reward: {'EO': 0.5185496026201819}
2025-07-24 00:11:25,158 comm.communication INFO <0.50> Optimizing data communication between all pairs of satellites
2025-07-24 00:11:25,160 sats.satellite.EO INFO <0.50> EO: Satellite EO requires retasking
2025-07-24 00:11:25,164 gym INFO <0.50> Step reward: 0.5185496026201819
2025-07-24 00:11:25,166 gym INFO <0.50> === STARTING STEP ===
2025-07-24 00:11:25,166 sats.satellite.EO INFO <0.50> EO: target index 1 tasked
2025-07-24 00:11:25,167 sats.satellite.EO INFO <0.50> EO: Target(tgt-634) tasked for imaging
2025-07-24 00:11:25,169 sats.satellite.EO INFO <0.50> EO: Target(tgt-634) window enabled: 214.4 to 324.0
2025-07-24 00:11:25,169 sats.satellite.EO INFO <0.50> EO: setting timed terminal event at 324.0
2025-07-24 00:11:25,170 sats.satellite.EO INFO <1.00> EO: imaged Target(tgt-634)
2025-07-24 00:11:25,172 data.base INFO <1.00> Total reward: {'EO': 0.1011278274566988}
2025-07-24 00:11:25,172 comm.communication INFO <1.00> Optimizing data communication between all pairs of satellites
2025-07-24 00:11:25,174 sats.satellite.EO INFO <1.00> EO: Satellite EO requires retasking
2025-07-24 00:11:25,178 gym INFO <1.00> Step reward: 0.1011278274566988
2025-07-24 00:11:25,180 gym INFO <1.00> === STARTING STEP ===
2025-07-24 00:11:25,180 sats.satellite.EO INFO <1.00> EO: target index 2 tasked
2025-07-24 00:11:25,181 sats.satellite.EO INFO <1.00> EO: Target(tgt-883) tasked for imaging
2025-07-24 00:11:25,182 sats.satellite.EO INFO <1.00> EO: Target(tgt-883) window enabled: 297.2 to 376.9
2025-07-24 00:11:25,183 sats.satellite.EO INFO <1.00> EO: setting timed terminal event at 376.9
2025-07-24 00:11:25,185 sats.satellite.EO INFO <1.50> EO: imaged Target(tgt-883)
2025-07-24 00:11:25,186 data.base INFO <1.50> Total reward: {'EO': 0.17225514293500632}
2025-07-24 00:11:25,187 comm.communication INFO <1.50> Optimizing data communication between all pairs of satellites
2025-07-24 00:11:25,188 sats.satellite.EO INFO <1.50> EO: Satellite EO requires retasking
2025-07-24 00:11:25,193 gym INFO <1.50> Step reward: 0.17225514293500632
2025-07-24 00:11:25,195 gym INFO <1.50> === STARTING STEP ===
2025-07-24 00:11:25,195 sats.satellite.EO INFO <1.50> EO: target index 30 tasked
2025-07-24 00:11:25,196 sats.satellite.EO INFO <1.50> EO: Target(tgt-846) tasked for imaging
2025-07-24 00:11:25,197 sats.satellite.EO INFO <1.50> EO: Target(tgt-846) window enabled: 2997.6 to 3109.8
2025-07-24 00:11:25,198 sats.satellite.EO INFO <1.50> EO: setting timed terminal event at 3109.8
2025-07-24 00:11:25,200 sats.satellite.EO INFO <2.00> EO: imaged Target(tgt-846)
2025-07-24 00:11:25,201 data.base INFO <2.00> Total reward: {'EO': 0.6230685362738178}
2025-07-24 00:11:25,202 comm.communication INFO <2.00> Optimizing data communication between all pairs of satellites
2025-07-24 00:11:25,203 sats.satellite.EO INFO <2.00> EO: Satellite EO requires retasking
2025-07-24 00:11:25,208 gym INFO <2.00> Step reward: 0.6230685362738178
2025-07-24 00:11:25,209 gym INFO <2.00> === STARTING STEP ===
2025-07-24 00:11:25,210 sats.satellite.EO INFO <2.00> EO: target index 20 tasked
2025-07-24 00:11:25,210 sats.satellite.EO INFO <2.00> EO: Target(tgt-967) tasked for imaging
2025-07-24 00:11:25,212 sats.satellite.EO INFO <2.00> EO: Target(tgt-967) window enabled: 2032.2 to 2132.1
2025-07-24 00:11:25,212 sats.satellite.EO INFO <2.00> EO: setting timed terminal event at 2132.1
2025-07-24 00:11:25,214 sats.satellite.EO INFO <2.50> EO: imaged Target(tgt-967)
2025-07-24 00:11:25,216 data.base INFO <2.50> Total reward: {'EO': 0.44341724161916973}
2025-07-24 00:11:25,216 comm.communication INFO <2.50> Optimizing data communication between all pairs of satellites
2025-07-24 00:11:25,217 sats.satellite.EO INFO <2.50> EO: Satellite EO requires retasking
2025-07-24 00:11:25,222 gym INFO <2.50> Step reward: 0.44341724161916973
2025-07-24 00:11:25,224 gym INFO <2.50> === STARTING STEP ===
2025-07-24 00:11:25,224 sats.satellite.EO INFO <2.50> EO: target index 7 tasked
2025-07-24 00:11:25,224 sats.satellite.EO INFO <2.50> EO: Target(tgt-894) tasked for imaging
2025-07-24 00:11:25,226 sats.satellite.EO INFO <2.50> EO: Target(tgt-894) window enabled: 799.2 to 882.8
2025-07-24 00:11:25,226 sats.satellite.EO INFO <2.50> EO: setting timed terminal event at 882.8
2025-07-24 00:11:25,228 sats.satellite.EO INFO <3.00> EO: imaged Target(tgt-894)
2025-07-24 00:11:25,230 data.base INFO <3.00> Total reward: {'EO': 0.9484757208286156}
2025-07-24 00:11:25,230 comm.communication INFO <3.00> Optimizing data communication between all pairs of satellites
2025-07-24 00:11:25,232 sats.satellite.EO INFO <3.00> EO: Satellite EO requires retasking
2025-07-24 00:11:25,236 gym INFO <3.00> Step reward: 0.9484757208286156
2025-07-24 00:11:25,238 gym INFO <3.00> === STARTING STEP ===
2025-07-24 00:11:25,238 sats.satellite.EO INFO <3.00> EO: target index 11 tasked
2025-07-24 00:11:25,239 sats.satellite.EO INFO <3.00> EO: Target(tgt-413) tasked for imaging
2025-07-24 00:11:25,240 sats.satellite.EO INFO <3.00> EO: Target(tgt-413) window enabled: 1181.6 to 1281.3
2025-07-24 00:11:25,240 sats.satellite.EO INFO <3.00> EO: setting timed terminal event at 1281.3
2025-07-24 00:11:25,242 sats.satellite.EO INFO <3.50> EO: imaged Target(tgt-413)
2025-07-24 00:11:25,244 data.base INFO <3.50> Total reward: {'EO': 0.27114812998614257}
2025-07-24 00:11:25,244 comm.communication INFO <3.50> Optimizing data communication between all pairs of satellites
2025-07-24 00:11:25,245 sats.satellite.EO INFO <3.50> EO: Satellite EO requires retasking
2025-07-24 00:11:25,250 gym INFO <3.50> Step reward: 0.27114812998614257
2025-07-24 00:11:25,251 gym INFO <3.50> === STARTING STEP ===
2025-07-24 00:11:25,252 sats.satellite.EO INFO <3.50> EO: target index 18 tasked
2025-07-24 00:11:25,252 sats.satellite.EO INFO <3.50> EO: Target(tgt-533) tasked for imaging
2025-07-24 00:11:25,254 sats.satellite.EO INFO <3.50> EO: Target(tgt-533) window enabled: 2225.7 to 2339.0
2025-07-24 00:11:25,254 sats.satellite.EO INFO <3.50> EO: setting timed terminal event at 2339.0
2025-07-24 00:11:25,256 sats.satellite.EO INFO <4.00> EO: imaged Target(tgt-533)
2025-07-24 00:11:25,257 data.base INFO <4.00> Total reward: {'EO': 0.11836853522372437}
2025-07-24 00:11:25,258 comm.communication INFO <4.00> Optimizing data communication between all pairs of satellites
2025-07-24 00:11:25,259 sats.satellite.EO INFO <4.00> EO: Satellite EO requires retasking
2025-07-24 00:11:25,263 gym INFO <4.00> Step reward: 0.11836853522372437
2025-07-24 00:11:25,265 gym INFO <4.00> === STARTING STEP ===
2025-07-24 00:11:25,265 sats.satellite.EO INFO <4.00> EO: target index 27 tasked
2025-07-24 00:11:25,266 sats.satellite.EO INFO <4.00> EO: Target(tgt-431) tasked for imaging
2025-07-24 00:11:25,268 sats.satellite.EO INFO <4.00> EO: Target(tgt-431) window enabled: 3091.7 to 3194.3
2025-07-24 00:11:25,268 sats.satellite.EO INFO <4.00> EO: setting timed terminal event at 3194.3
2025-07-24 00:11:25,269 sats.satellite.EO INFO <4.50> EO: imaged Target(tgt-431)
2025-07-24 00:11:25,271 data.base INFO <4.50> Total reward: {'EO': 0.992581228889437}
2025-07-24 00:11:25,272 comm.communication INFO <4.50> Optimizing data communication between all pairs of satellites
2025-07-24 00:11:25,273 sats.satellite.EO INFO <4.50> EO: Satellite EO requires retasking
2025-07-24 00:11:25,277 gym INFO <4.50> Step reward: 0.992581228889437
2025-07-24 00:11:25,279 gym INFO <4.50> === STARTING STEP ===
2025-07-24 00:11:25,279 sats.satellite.EO INFO <4.50> EO: target index 16 tasked
2025-07-24 00:11:25,280 sats.satellite.EO INFO <4.50> EO: Target(tgt-274) tasked for imaging
2025-07-24 00:11:25,281 sats.satellite.EO INFO <4.50> EO: Target(tgt-274) window enabled: 2008.3 to 2019.5
2025-07-24 00:11:25,282 sats.satellite.EO INFO <4.50> EO: setting timed terminal event at 2019.5
2025-07-24 00:11:25,431 sim.simulator INFO <304.50> Max step duration reached
2025-07-24 00:11:25,433 data.base INFO <304.50> Total reward: {}
2025-07-24 00:11:25,434 comm.communication INFO <304.50> Optimizing data communication between all pairs of satellites
2025-07-24 00:11:25,439 sats.satellite.EO WARNING <304.50> EO: failed rw_speeds_valid check
2025-07-24 00:11:25,440 gym INFO <304.50> Step reward: 0.0
2025-07-24 00:11:25,440 gym INFO <304.50> Episode terminated: True
2025-07-24 00:11:25,440 gym INFO <304.50> Episode truncated: False
Episode complete.
Total reward: 4.188991965832794