Fault Environment Example
This tutorial demonstrates how to configure and use a simple BSK-RL environment to model faults in a system with four reaction wheels (RWs).
Load Modules
[1]:
import numpy as np
from typing import Iterable
from Basilisk.architecture import bskLogging
from Basilisk.utilities import macros, orbitalMotion, simIncludeRW
from Basilisk.simulation import reactionWheelStateEffector
from Basilisk.fswAlgorithms import rwNullSpace
from Basilisk.architecture import messaging
from bsk_rl import SatelliteTasking, act, data, obs, scene, sats
from bsk_rl.sim import dyn, fsw, world
from bsk_rl.utils.orbital import random_orbit, random_unit_vector
from bsk_rl.utils.functional import default_args
bskLogging.setDefaultLogLevel(bskLogging.BSK_WARNING)
Making Faults Cases
Creating a fault base class and defining individual fault types enables modeling multiple kinds of faults within a single satellite. In this example, a power draw limit is applied to RWs, causing it to operate at reduced speed compared to nominal conditions. By default, while a torque limit is enforced, there are no restrictions on power draw. time
is used to define the time at which the fault occurs, reducedLimit
specifies the power draw limit in watts, and wheel_Idx
indicates which
RW is affected by the fault. It can be set to a value from 1 to 4, or to all to apply the fault to every RW.
[2]:
class FaultObject:
def __init__(self, name, time, verbose=True, **kwargs):
self.name = name
self.time = time
self.verbose = verbose
self.message = None
self.message_printed = False
def execute(self, satellite):
raise NotImplementedError(
f"{self.name} does not have a custom execute function!"
)
def print_message(self, message, satellite):
if not self.message_printed:
satellite.logger.info(message)
self.message_printed = True
def addFaultToSimulation(self, satellite, listIdx):
self.uniqueFaultIdx = listIdx # Index in the faultList array.
satellite.simulator.createNewEvent(
f"add{self.name}Fault",
satellite.dynamics.dyn_rate,
True,
[f"self.TotalSim.CurrentNanos>={self.time}"],
[
f"self.faultList[{self.uniqueFaultIdx}].execute({satellite._satellite_command})",
f"self.faultList[{self.uniqueFaultIdx}].print({satellite._satellite_command})",
],
)
class RwPowerFault(FaultObject):
def __init__(self, name, time, reducedLimit, wheelIdx):
super().__init__(name, time)
self.reducedLimit = reducedLimit
if isinstance(wheelIdx, float):
# int needed around wheelIdx because np.random.choice doesn't return
# a type int, and the index will not register in execute without it.
self.wheelIdx = int(wheelIdx)
elif isinstance(wheelIdx, int) or wheelIdx == "all":
# option to trigger the fault in all wheels reflecting a larger power issue
self.wheelIdx = wheelIdx
else:
raise ValueError(
"Fault parameter 'wheelIdx' must either be a number corresponding to a reaction wheel or the string 'all'"
)
def execute(self, satellite):
dynModels = satellite.dynamics
if self.wheelIdx == 1:
dynModels.rwFactory.rwList["RW1"].P_max = self.reducedLimit
elif self.wheelIdx == 2:
dynModels.rwFactory.rwList["RW2"].P_max = self.reducedLimit
elif self.wheelIdx == 3:
dynModels.rwFactory.rwList["RW3"].P_max = self.reducedLimit
elif self.wheelIdx == 4:
dynModels.rwFactory.rwList["RW4"].P_max = self.reducedLimit
elif self.wheelIdx == "all":
# option to trigger the fault in all wheels (not supported for all fault types)
dynModels.rwFactory.rwList["RW1"].P_max = self.reducedLimit
dynModels.rwFactory.rwList["RW2"].P_max = self.reducedLimit
dynModels.rwFactory.rwList["RW3"].P_max = self.reducedLimit
dynModels.rwFactory.rwList["RW4"].P_max = self.reducedLimit
def print(self, satellite):
if self.wheelIdx == "all":
self.message = f"RW Power Fault: all RW's power limit reduced to {self.reducedLimit} Watts at {self.time*macros.NANO2MIN} minutes!"
else:
self.message = f"RW Power Fault: RW{self.wheelIdx}'s power limit reduced to {self.reducedLimit} Watts at {self.time*macros.NANO2MIN} minutes!"
super().print_message(self.message, satellite)
Configure the Simulation Models
Dynamics model:
FullFeaturedDynModel
is used as the base class, andsetup_reaction_wheel_dyn_effector
is overridden to support four RWs. Two additional properties are added: the angle between the Sun and the solar panel, and the speed fraction of each RW.
[3]:
class CustomDynModel(dyn.FullFeaturedDynModel):
@property
def solar_angle_norm(self) -> float:
sun_vec_N = (
self.world.gravFactory.spiceObject.planetStateOutMsgs[self.world.sun_index]
.read()
.PositionVector
)
sun_vec_N_hat = sun_vec_N / np.linalg.norm(sun_vec_N)
solar_panel_vec_B = np.array([0, 0, -1])
mat = np.transpose(self.BN)
solar_panel_vec_N = np.matmul(mat, solar_panel_vec_B)
error_angle = np.arccos(np.dot(solar_panel_vec_N, sun_vec_N_hat))
return error_angle / np.pi
@property
def wheel_speeds_frac(self):
rw_speed = self.wheel_speeds
return rw_speed[0:4] / (self.maxWheelSpeed * macros.rpm2radsec)
@default_args(
wheelSpeeds=lambda: np.random.uniform(-1500, 1500, 4),
maxWheelSpeed=np.inf,
u_max=0.200,
)
def setup_reaction_wheel_dyn_effector(
self,
wheelSpeeds: Iterable[float],
maxWheelSpeed: float,
u_max: float,
priority: int = 997,
**kwargs,
) -> None:
"""Set the RW state effector parameters.
Args:
wheelSpeeds: Initial speeds of each wheel [RPM]
maxWheelSpeed: Failure speed for wheels [RPM]
u_max: Torque producible by wheel [N*m]
priority: Model priority.
kwargs: Ignored
"""
def balancedHR16Triad(
useRandom=False, randomBounds=(-400, 400), wheelSpeeds=[500, 500, 500, 500]
):
"""Create a set of three HR16 reaction wheels.
Args:
useRandom: Use random values for wheel speeds.
randomBounds: Bounds for random wheel speeds.
wheelSpeeds: Fixed wheel speeds.
Returns:
tuple:
* **rwStateEffector**: Reaction wheel state effector instance.
* **rwFactory**: Factory containing defined reaction wheels.
* **wheelSpeeds**: Wheel speeds.
"""
rwFactory = simIncludeRW.rwFactory()
if useRandom:
wheelSpeeds = np.random.uniform(randomBounds[0], randomBounds[1], 4)
c = 3 ** (-0.5)
rwFactory.create(
"Honeywell_HR16",
[1, 0, 0],
maxMomentum=50.0,
Omega=wheelSpeeds[0],
)
rwFactory.create(
"Honeywell_HR16",
[0, 1, 0],
maxMomentum=50.0,
Omega=wheelSpeeds[1],
)
rwFactory.create(
"Honeywell_HR16",
[0, 0, 1],
maxMomentum=50.0,
Omega=wheelSpeeds[2],
)
rwFactory.create(
"Honeywell_HR16",
[c, c, c],
maxMomentum=50.0,
Omega=wheelSpeeds[3],
)
rwStateEffector = reactionWheelStateEffector.ReactionWheelStateEffector()
return rwStateEffector, rwFactory, wheelSpeeds
self.maxWheelSpeed = maxWheelSpeed
self.rwStateEffector, self.rwFactory, _ = balancedHR16Triad(
useRandom=False,
wheelSpeeds=wheelSpeeds,
)
for RW in self.rwFactory.rwList.values():
RW.u_max = u_max
self.rwStateEffector.ModelTag = "ReactionWheels"
self.rwFactory.addToSpacecraft(
self.scObject.ModelTag, self.rwStateEffector, self.scObject
)
self.simulator.AddModelToTask(
self.task_name, self.rwStateEffector, ModelPriority=priority
)
self.Gs = np.array(
[
[1, 0, 0, 1 / np.sqrt(3)], # RW1 and RW4 x-components
[0, 1, 0, 1 / np.sqrt(3)], # RW2 and RW4 y-components
[0, 0, 1, 1 / np.sqrt(3)], # RW3 and RW4 z-components
]
)
Flight software model: A custom flight software model is defined to support four RWs. It is based on the
SteeringImagerFSWModel
, with the main modification being the addition of therwNullSpace
module. Due to the redundancy of having four RWs, there are infinitely many solutions for mapping the required body control torque to individual RW torques. To address this, once the control torque is computed, the RW null space is used to decelerate the wheels without applying additional torque to the spacecraft.
[4]:
class CustomSteeringImagerFSWModel(fsw.SteeringImagerFSWModel):
def __init__(self, *args, **kwargs) -> None:
"""Convenience type that combines the imaging FSW model with MRP steering for four reaction wheels."""
super().__init__(*args, **kwargs)
def _set_config_msgs(self) -> None:
super()._set_config_msgs()
self._set_rw_constellation_msg()
def _set_rw_constellation_msg(self) -> None:
"""Set the reaction wheel constellation message."""
rwConstellationConfig = messaging.RWConstellationMsgPayload()
rwConstellationConfig.numRW = self.dynamics.rwFactory.getNumOfDevices()
rwConfigElementList = []
for i in range(4):
rwConfigElementMsg = messaging.RWConfigElementMsgPayload()
rwConfigElementMsg.gsHat_B = self.dynamics.Gs[:, i]
rwConfigElementMsg.Js = self.dynamics.rwFactory.rwList[f"RW{i+1}"].Js
rwConfigElementMsg.uMax = self.dynamics.rwFactory.rwList[f"RW{i+1}"].u_max
rwConfigElementList.append(rwConfigElementMsg)
rwConstellationConfig.reactionWheels = rwConfigElementList
self.rwConstellationConfigInMsg = messaging.RWConstellationMsg().write(
rwConstellationConfig
)
def _set_gateway_msgs(self) -> None:
"""Create C-wrapped gateway messages."""
self.attRefMsg = messaging.AttRefMsg_C()
self.attGuidMsg = messaging.AttGuidMsg_C()
self._zero_gateway_msgs()
# connect gateway FSW effector command msgs with the dynamics
self.dynamics.rwStateEffector.rwMotorCmdInMsg.subscribeTo(
self.rwNullSpace.rwMotorTorqueOutMsg
)
self.dynamics.thrusterSet.cmdsInMsg.subscribeTo(
self.thrDump.thrusterOnTimeOutMsg
)
class MRPControlTask(fsw.SteeringImagerFSWModel.MRPControlTask):
def _create_module_data(self) -> None:
super()._create_module_data()
self.rwNullSpace = self.fsw.rwNullSpace = rwNullSpace.rwNullSpace()
self.rwNullSpace.ModelTag = "rwNullSpace"
def _setup_fsw_objects(self, **kwargs) -> None:
super()._setup_fsw_objects(**kwargs)
self.set_rw_null_space(**kwargs)
@default_args(OmegaGain=0.3)
def set_rw_null_space(
self,
OmegaGain: float,
**kwargs,
) -> None:
"""Define the null space to slow down the wheels."""
self.rwNullSpace.rwMotorTorqueInMsg.subscribeTo(
self.rwMotorTorque.rwMotorTorqueOutMsg
)
self.rwNullSpace.rwSpeedsInMsg.subscribeTo(
self.fsw.dynamics.rwStateEffector.rwSpeedOutMsg
)
self.rwNullSpace.rwConfigInMsg.subscribeTo(
self.fsw.rwConstellationConfigInMsg
)
self.rwNullSpace.OmegaGain = OmegaGain
self._add_model_to_task(self.rwNullSpace, priority=1193)
Configure the Satellite
-
SatProperties: Body angular velocity, instrument pointing direction, body position, body velocity, battery charge (properties in flight software model or dynamics model). Also, customized dynamics property in CustomDynModel above: Angle between the sun and the solar panel and four RW speed fraction.
OpportunityProperties: Target’s priority, normalized location, and target angle (upcoming 32 targets).
Time: Simulation time.
Eclipse: Next eclipse start and end times.
-
Desat: Manage momentum for the RWs for 60 seconds.
Charge: Enter a sun-pointing charging mode for 60 seconds.
Image: Image target from upcoming 32 targets
The fault is introduced by overriding the reset_post_sim_init
function. The probability of the fault occurring can be specified using the fault_chance
argument, and the time of occurrence can be set using the fault_time
argument.
[5]:
class CustomSatComposed(sats.ImagingSatellite):
observation_spec = [
obs.SatProperties(
dict(prop="omega_BP_P", norm=0.03),
dict(prop="c_hat_P"),
dict(prop="r_BN_P", norm=orbitalMotion.REQ_EARTH * 1e3),
dict(prop="v_BN_P", norm=7616.5),
dict(prop="battery_charge_fraction"),
dict(prop="solar_angle_norm"),
dict(prop="wheel_speeds_frac"),
),
obs.OpportunityProperties(
dict(prop="priority"),
dict(prop="r_LP_P", norm=orbitalMotion.REQ_EARTH * 1e3),
dict(prop="target_angle", norm=np.pi),
type="target",
n_ahead_observe=32,
),
obs.Time(),
obs.Eclipse(norm=5700),
]
action_spec = [
act.Desat(duration=60.0),
act.Charge(duration=60.0),
act.Image(n_ahead_image=32),
]
# Modified the constructor to include the fault chance and list
def __init__(self, *args, fault_chance=0, fault_time=0.0, **kwargs) -> None:
super().__init__(*args, **kwargs)
self.fault_chance = fault_chance
self.fault_time = fault_time
self.faultList = [] # List to store faults
def reset_post_sim_init(self) -> None:
super().reset_post_sim_init()
if np.random.random() < self.fault_chance:
powerFault = RwPowerFault(
"rwPowerLimited", self.fault_time, reducedLimit=1.0, wheelIdx=1
)
self.faultList = [powerFault]
self.simulator.faultList = self.faultList
for i in range(len(self.faultList)):
self.faultList[i].addFaultToSimulation(self, i)
dyn_type = CustomDynModel
fsw_type = CustomSteeringImagerFSWModel
Configure Satellite Pareameters
When instantiating a satellite, these parameters can be overriden with a constant or rerandomized every time the environment is reset using the sat_args
dictionary.
[6]:
dataStorageCapacity = 20 * 8e6 * 100
batteryStorageCapacity = 80.0 * 3600 * 2
sat_args = CustomSatComposed.default_sat_args(
oe=random_orbit,
imageAttErrorRequirement=0.01,
imageRateErrorRequirement=0.01,
batteryStorageCapacity=batteryStorageCapacity,
storedCharge_Init=lambda: np.random.uniform(0.4, 1.0) * batteryStorageCapacity,
u_max=0.2, # More realistic values than 1.0
K1=0.5, # Updated value to have smooth and more predictable control
nHat_B=np.array([0, 0, -1]),
imageTargetMinimumElevation=np.radians(45),
rwBasePower=20,
maxWheelSpeed=1500,
storageInit=lambda: np.random.randint(
0 * dataStorageCapacity,
0.01 * dataStorageCapacity,
),
wheelSpeeds=lambda: np.random.uniform(-900, 900, 4),
disturbance_vector=lambda: random_unit_vector(),
)
# Make the satellites
satellites = []
satellites.append(
CustomSatComposed(
"EO",
sat_args,
fault_chance=1.0,
fault_time=0.0, # Fault occurs at 0.0 (nano seconds)
)
)
Making and interacting the Environment
For this example, the single-agent SatelliteTasking environment is used. n addition to the configured satellite, the environment requires a scenario, which defines the context in which the satellite operates. In this case, the scenario uses UniformTargets
, placing 1000 uniformly distributed targets across the Earth’s surface. The environment also takes a rewarder, which defines how
data collected from the scenario is rewarded. Here, UniqueImageReward
is used, which assigns rewards based on the sum of the priorities of uniquely imaged targets in each episode.
[7]:
env = SatelliteTasking(
satellite=satellites,
terminate_on_time_limit=True,
world_type=world.GroundStationWorldModel,
world_args=world.GroundStationWorldModel.default_world_args(),
scenario=scene.UniformTargets(n_targets=1000),
rewarder=data.UniqueImageReward(),
sim_rate=0.5,
max_step_duration=300.0,
time_limit=95 * 60 * 3,
log_level="INFO",
failure_penalty=0,
# disable_env_checker=True, # For debugging
)
First, the environment is reset. A seed is provided to ensure reproducibility of the results; it can be removed to enable randomized testing.
[8]:
observation, info = env.reset(seed=1)
2025-08-25 18:15:53,675 gym INFO Resetting environment with seed=1
2025-08-25 18:15:53,677 scene.targets INFO Generating 1000 targets
2025-08-25 18:15:53,775 sats.satellite.EO INFO <0.00> EO: Finding opportunity windows from 0.00 to 17100.00 seconds
2025-08-25 18:15:54,078 gym INFO <0.00> Environment reset
The composed satellite action space returns a human-readable action map and each satellite has the same action space and similar observation space.
[9]:
print("Actions:", satellites[0].action_description)
print("States:", env.unwrapped.satellites[0].observation_description, "\n")
# Using the composed satellite features also provides a human-readable state:
for satellite in env.unwrapped.satellites:
for k, v in satellite.observation_builder.obs_dict().items():
print(f"{k}: {v}")
Actions: ['action_desat', 'action_charge', 'action_image_0', 'action_image_1', 'action_image_2', 'action_image_3', 'action_image_4', 'action_image_5', 'action_image_6', 'action_image_7', 'action_image_8', 'action_image_9', 'action_image_10', 'action_image_11', 'action_image_12', 'action_image_13', 'action_image_14', 'action_image_15', 'action_image_16', 'action_image_17', 'action_image_18', 'action_image_19', 'action_image_20', 'action_image_21', 'action_image_22', 'action_image_23', 'action_image_24', 'action_image_25', 'action_image_26', 'action_image_27', 'action_image_28', 'action_image_29', 'action_image_30', 'action_image_31']
States: [np.str_('sat_props.omega_BP_P_normd[0]'), np.str_('sat_props.omega_BP_P_normd[1]'), np.str_('sat_props.omega_BP_P_normd[2]'), np.str_('sat_props.c_hat_P[0]'), np.str_('sat_props.c_hat_P[1]'), np.str_('sat_props.c_hat_P[2]'), np.str_('sat_props.r_BN_P_normd[0]'), np.str_('sat_props.r_BN_P_normd[1]'), np.str_('sat_props.r_BN_P_normd[2]'), np.str_('sat_props.v_BN_P_normd[0]'), np.str_('sat_props.v_BN_P_normd[1]'), np.str_('sat_props.v_BN_P_normd[2]'), np.str_('sat_props.battery_charge_fraction'), np.str_('sat_props.solar_angle_norm'), np.str_('sat_props.wheel_speeds_frac[0]'), np.str_('sat_props.wheel_speeds_frac[1]'), np.str_('sat_props.wheel_speeds_frac[2]'), np.str_('target.target_0.priority'), np.str_('target.target_0.r_LP_P_normd[0]'), np.str_('target.target_0.r_LP_P_normd[1]'), np.str_('target.target_0.r_LP_P_normd[2]'), np.str_('target.target_0.target_angle_normd'), np.str_('target.target_1.priority'), np.str_('target.target_1.r_LP_P_normd[0]'), np.str_('target.target_1.r_LP_P_normd[1]'), np.str_('target.target_1.r_LP_P_normd[2]'), np.str_('target.target_1.target_angle_normd'), np.str_('target.target_2.priority'), np.str_('target.target_2.r_LP_P_normd[0]'), np.str_('target.target_2.r_LP_P_normd[1]'), np.str_('target.target_2.r_LP_P_normd[2]'), np.str_('target.target_2.target_angle_normd'), np.str_('target.target_3.priority'), np.str_('target.target_3.r_LP_P_normd[0]'), np.str_('target.target_3.r_LP_P_normd[1]'), np.str_('target.target_3.r_LP_P_normd[2]'), np.str_('target.target_3.target_angle_normd'), np.str_('target.target_4.priority'), np.str_('target.target_4.r_LP_P_normd[0]'), np.str_('target.target_4.r_LP_P_normd[1]'), np.str_('target.target_4.r_LP_P_normd[2]'), np.str_('target.target_4.target_angle_normd'), np.str_('target.target_5.priority'), np.str_('target.target_5.r_LP_P_normd[0]'), np.str_('target.target_5.r_LP_P_normd[1]'), np.str_('target.target_5.r_LP_P_normd[2]'), np.str_('target.target_5.target_angle_normd'), np.str_('target.target_6.priority'), np.str_('target.target_6.r_LP_P_normd[0]'), np.str_('target.target_6.r_LP_P_normd[1]'), np.str_('target.target_6.r_LP_P_normd[2]'), np.str_('target.target_6.target_angle_normd'), np.str_('target.target_7.priority'), np.str_('target.target_7.r_LP_P_normd[0]'), np.str_('target.target_7.r_LP_P_normd[1]'), np.str_('target.target_7.r_LP_P_normd[2]'), np.str_('target.target_7.target_angle_normd'), np.str_('target.target_8.priority'), np.str_('target.target_8.r_LP_P_normd[0]'), np.str_('target.target_8.r_LP_P_normd[1]'), np.str_('target.target_8.r_LP_P_normd[2]'), np.str_('target.target_8.target_angle_normd'), np.str_('target.target_9.priority'), np.str_('target.target_9.r_LP_P_normd[0]'), np.str_('target.target_9.r_LP_P_normd[1]'), np.str_('target.target_9.r_LP_P_normd[2]'), np.str_('target.target_9.target_angle_normd'), np.str_('target.target_10.priority'), np.str_('target.target_10.r_LP_P_normd[0]'), np.str_('target.target_10.r_LP_P_normd[1]'), np.str_('target.target_10.r_LP_P_normd[2]'), np.str_('target.target_10.target_angle_normd'), np.str_('target.target_11.priority'), np.str_('target.target_11.r_LP_P_normd[0]'), np.str_('target.target_11.r_LP_P_normd[1]'), np.str_('target.target_11.r_LP_P_normd[2]'), np.str_('target.target_11.target_angle_normd'), np.str_('target.target_12.priority'), np.str_('target.target_12.r_LP_P_normd[0]'), np.str_('target.target_12.r_LP_P_normd[1]'), np.str_('target.target_12.r_LP_P_normd[2]'), np.str_('target.target_12.target_angle_normd'), np.str_('target.target_13.priority'), np.str_('target.target_13.r_LP_P_normd[0]'), np.str_('target.target_13.r_LP_P_normd[1]'), np.str_('target.target_13.r_LP_P_normd[2]'), np.str_('target.target_13.target_angle_normd'), np.str_('target.target_14.priority'), np.str_('target.target_14.r_LP_P_normd[0]'), np.str_('target.target_14.r_LP_P_normd[1]'), np.str_('target.target_14.r_LP_P_normd[2]'), np.str_('target.target_14.target_angle_normd'), np.str_('target.target_15.priority'), np.str_('target.target_15.r_LP_P_normd[0]'), np.str_('target.target_15.r_LP_P_normd[1]'), np.str_('target.target_15.r_LP_P_normd[2]'), np.str_('target.target_15.target_angle_normd'), np.str_('target.target_16.priority'), np.str_('target.target_16.r_LP_P_normd[0]'), np.str_('target.target_16.r_LP_P_normd[1]'), np.str_('target.target_16.r_LP_P_normd[2]'), np.str_('target.target_16.target_angle_normd'), np.str_('target.target_17.priority'), np.str_('target.target_17.r_LP_P_normd[0]'), np.str_('target.target_17.r_LP_P_normd[1]'), np.str_('target.target_17.r_LP_P_normd[2]'), np.str_('target.target_17.target_angle_normd'), np.str_('target.target_18.priority'), np.str_('target.target_18.r_LP_P_normd[0]'), np.str_('target.target_18.r_LP_P_normd[1]'), np.str_('target.target_18.r_LP_P_normd[2]'), np.str_('target.target_18.target_angle_normd'), np.str_('target.target_19.priority'), np.str_('target.target_19.r_LP_P_normd[0]'), np.str_('target.target_19.r_LP_P_normd[1]'), np.str_('target.target_19.r_LP_P_normd[2]'), np.str_('target.target_19.target_angle_normd'), np.str_('target.target_20.priority'), np.str_('target.target_20.r_LP_P_normd[0]'), np.str_('target.target_20.r_LP_P_normd[1]'), np.str_('target.target_20.r_LP_P_normd[2]'), np.str_('target.target_20.target_angle_normd'), np.str_('target.target_21.priority'), np.str_('target.target_21.r_LP_P_normd[0]'), np.str_('target.target_21.r_LP_P_normd[1]'), np.str_('target.target_21.r_LP_P_normd[2]'), np.str_('target.target_21.target_angle_normd'), np.str_('target.target_22.priority'), np.str_('target.target_22.r_LP_P_normd[0]'), np.str_('target.target_22.r_LP_P_normd[1]'), np.str_('target.target_22.r_LP_P_normd[2]'), np.str_('target.target_22.target_angle_normd'), np.str_('target.target_23.priority'), np.str_('target.target_23.r_LP_P_normd[0]'), np.str_('target.target_23.r_LP_P_normd[1]'), np.str_('target.target_23.r_LP_P_normd[2]'), np.str_('target.target_23.target_angle_normd'), np.str_('target.target_24.priority'), np.str_('target.target_24.r_LP_P_normd[0]'), np.str_('target.target_24.r_LP_P_normd[1]'), np.str_('target.target_24.r_LP_P_normd[2]'), np.str_('target.target_24.target_angle_normd'), np.str_('target.target_25.priority'), np.str_('target.target_25.r_LP_P_normd[0]'), np.str_('target.target_25.r_LP_P_normd[1]'), np.str_('target.target_25.r_LP_P_normd[2]'), np.str_('target.target_25.target_angle_normd'), np.str_('target.target_26.priority'), np.str_('target.target_26.r_LP_P_normd[0]'), np.str_('target.target_26.r_LP_P_normd[1]'), np.str_('target.target_26.r_LP_P_normd[2]'), np.str_('target.target_26.target_angle_normd'), np.str_('target.target_27.priority'), np.str_('target.target_27.r_LP_P_normd[0]'), np.str_('target.target_27.r_LP_P_normd[1]'), np.str_('target.target_27.r_LP_P_normd[2]'), np.str_('target.target_27.target_angle_normd'), np.str_('target.target_28.priority'), np.str_('target.target_28.r_LP_P_normd[0]'), np.str_('target.target_28.r_LP_P_normd[1]'), np.str_('target.target_28.r_LP_P_normd[2]'), np.str_('target.target_28.target_angle_normd'), np.str_('target.target_29.priority'), np.str_('target.target_29.r_LP_P_normd[0]'), np.str_('target.target_29.r_LP_P_normd[1]'), np.str_('target.target_29.r_LP_P_normd[2]'), np.str_('target.target_29.target_angle_normd'), np.str_('target.target_30.priority'), np.str_('target.target_30.r_LP_P_normd[0]'), np.str_('target.target_30.r_LP_P_normd[1]'), np.str_('target.target_30.r_LP_P_normd[2]'), np.str_('target.target_30.target_angle_normd'), np.str_('target.target_31.priority'), np.str_('target.target_31.r_LP_P_normd[0]'), np.str_('target.target_31.r_LP_P_normd[1]'), np.str_('target.target_31.r_LP_P_normd[2]'), np.str_('target.target_31.target_angle_normd'), np.str_('time'), np.str_('eclipse[0]'), np.str_('eclipse[1]')]
sat_props: {'omega_BP_P_normd': array([0.00137284, 0.00080893, 0.00185074]), 'c_hat_P': array([-0.94095395, -0.07120216, -0.3309621 ]), 'r_BN_P_normd': array([-0.76023893, -0.76226973, 0.03873832]), 'v_BN_P_normd': array([-0.74001565, 0.72585949, -0.23976204]), 'battery_charge_fraction': 0.48805353449026784, 'solar_angle_norm': np.float64(0.3675725758375922), 'wheel_speeds_frac': array([ 0.2222634 , -0.3546573 , 0.45374092])}
target: {'target_0': {'priority': 0.6797657443023485, 'r_LP_P_normd': array([-0.72304393, -0.69048255, 0.02100749]), 'target_angle_normd': np.float64(0.6357597658378449)}, 'target_1': {'priority': 0.1011278274566988, 'r_LP_P_normd': array([-0.8839314 , -0.46366914, -0.06063175]), 'target_angle_normd': np.float64(0.3764086411837673)}, 'target_2': {'priority': 0.6931851990942818, 'r_LP_P_normd': array([-0.92043412, -0.36952122, -0.12749548]), 'target_angle_normd': np.float64(0.3723877146688926)}, 'target_3': {'priority': 0.17225514293500632, 'r_LP_P_normd': array([-0.92565997, -0.37833103, -0.00438879]), 'target_angle_normd': np.float64(0.38981813759316086)}, 'target_4': {'priority': 0.5711709172856598, 'r_LP_P_normd': array([-0.96343073, -0.26718398, -0.02034567]), 'target_angle_normd': np.float64(0.3943146022248573)}, 'target_5': {'priority': 0.39915339691165386, 'r_LP_P_normd': array([-0.9832796 , -0.17545716, -0.04874432]), 'target_angle_normd': np.float64(0.39937897834300234)}, 'target_6': {'priority': 0.3659991252731889, 'r_LP_P_normd': array([-0.99415125, -0.07715346, -0.07556872]), 'target_angle_normd': np.float64(0.4078843692651548)}, 'target_7': {'priority': 0.8196046614443331, 'r_LP_P_normd': array([-0.99765329, -0.01207943, -0.06739442]), 'target_angle_normd': np.float64(0.4168294389284707)}, 'target_8': {'priority': 0.31321450974410614, 'r_LP_P_normd': array([-0.97449116, 0.1725315 , -0.1435265 ]), 'target_angle_normd': np.float64(0.4358647819265422)}, 'target_9': {'priority': 0.9484757208286156, 'r_LP_P_normd': array([-0.96031054, 0.17441228, -0.21767872]), 'target_angle_normd': np.float64(0.433242760838707)}, 'target_10': {'priority': 0.48592850306846924, 'r_LP_P_normd': array([-0.96853779, 0.21402263, -0.12699944]), 'target_angle_normd': np.float64(0.4426489488945429)}, 'target_11': {'priority': 0.6184129633885858, 'r_LP_P_normd': array([-0.96210743, 0.21701823, -0.16508293]), 'target_angle_normd': np.float64(0.4411215055325246)}, 'target_12': {'priority': 0.17947175160982998, 'r_LP_P_normd': array([-0.94017117, 0.243405 , -0.23839502]), 'target_angle_normd': np.float64(0.4427323667761162)}, 'target_13': {'priority': 0.7384995398085523, 'r_LP_P_normd': array([-0.80487741, 0.52282763, -0.28075545]), 'target_angle_normd': np.float64(0.48648454206124414)}, 'target_14': {'priority': 0.27114812998614257, 'r_LP_P_normd': array([-0.76729423, 0.58576762, -0.26102845]), 'target_angle_normd': np.float64(0.4977256880591026)}, 'target_15': {'priority': 0.602211552115518, 'r_LP_P_normd': array([-0.69808315, 0.6848033 , -0.20910371]), 'target_angle_normd': np.float64(0.5172281968118192)}, 'target_16': {'priority': 0.379803286768697, 'r_LP_P_normd': array([-0.49501598, 0.82573585, -0.27040613]), 'target_angle_normd': np.float64(0.5507581988576493)}, 'target_17': {'priority': 0.4436831213331952, 'r_LP_P_normd': array([-0.45042693, 0.86931897, -0.20347018]), 'target_angle_normd': np.float64(0.5625207407345922)}, 'target_18': {'priority': 0.7048706468084478, 'r_LP_P_normd': array([-0.21420724, 0.9326702 , -0.29024395]), 'target_angle_normd': np.float64(0.59373704837557)}, 'target_19': {'priority': 0.9285111717464954, 'r_LP_P_normd': array([-0.19966509, 0.94633197, -0.25414496]), 'target_angle_normd': np.float64(0.5980174335717613)}, 'target_20': {'priority': 0.6283839193934228, 'r_LP_P_normd': array([ 0.04079828, 0.96062029, -0.27485298]), 'target_angle_normd': np.float64(0.6314125127394534)}, 'target_21': {'priority': 0.1929743249397491, 'r_LP_P_normd': array([ 0.0355612 , 0.97627369, -0.21360027]), 'target_angle_normd': np.float64(0.6341742328673365)}, 'target_22': {'priority': 0.44341724161916973, 'r_LP_P_normd': array([ 0.11710105, 0.96569059, -0.23179522]), 'target_angle_normd': np.float64(0.6446733019141536)}, 'target_23': {'priority': 0.11836853522372437, 'r_LP_P_normd': array([ 0.34219224, 0.92570533, -0.16116486]), 'target_angle_normd': np.float64(0.6810789969475336)}, 'target_24': {'priority': 0.8270836989643272, 'r_LP_P_normd': array([ 0.37614852, 0.90638066, -0.19231846]), 'target_angle_normd': np.float64(0.6842502087329536)}, 'target_25': {'priority': 0.5185496026201819, 'r_LP_P_normd': array([ 0.38424706, 0.90105932, -0.20111263]), 'target_angle_normd': np.float64(0.6849377870859835)}, 'target_26': {'priority': 0.9675170836931263, 'r_LP_P_normd': array([ 0.38356319, 0.9111912 , -0.15036584]), 'target_angle_normd': np.float64(0.6878383017756565)}, 'target_27': {'priority': 0.9065897890064923, 'r_LP_P_normd': array([ 0.55753272, 0.82426831, -0.09868644]), 'target_angle_normd': np.float64(0.7179839245481688)}, 'target_28': {'priority': 0.9282669521531632, 'r_LP_P_normd': array([ 0.62887363, 0.76646723, -0.13056009]), 'target_angle_normd': np.float64(0.7278214487998897)}, 'target_29': {'priority': 0.07379201140065461, 'r_LP_P_normd': array([ 0.83349796, 0.55251892, -0.00199665]), 'target_angle_normd': np.float64(0.7770010755992804)}, 'target_30': {'priority': 0.010627938976362383, 'r_LP_P_normd': array([ 0.87933586, 0.46953401, -0.07941194]), 'target_angle_normd': np.float64(0.7821048162611637)}, 'target_31': {'priority': 0.13642904696262903, 'r_LP_P_normd': array([ 0.90564527, 0.41905752, -0.06478763]), 'target_angle_normd': np.float64(0.7904117166194159)}}
time: 0.0
eclipse: [np.float64(0.7684210526315789), np.float64(0.14210526315789473)]
The simulation runs until either the battery is depleted, a RW exceeds its maximum speed (both considered failures), or a timeout occurs (which simply stops the simulation).
[10]:
total_reward = 0.0
while True:
observation, reward, terminated, truncated, info = env.step(
env.action_space.sample()
)
total_reward += reward
if terminated or truncated:
print("Episode complete.")
break
print("Total reward:", total_reward)
2025-08-25 18:15:54,092 gym INFO <0.00> === STARTING STEP ===
2025-08-25 18:15:54,092 sats.satellite.EO INFO <0.00> EO: target index 7 tasked
2025-08-25 18:15:54,093 sats.satellite.EO INFO <0.00> EO: Target(tgt-93) tasked for imaging
2025-08-25 18:15:54,095 sats.satellite.EO INFO <0.00> EO: Target(tgt-93) window enabled: 648.0 to 671.8
2025-08-25 18:15:54,095 sats.satellite.EO INFO <0.00> EO: setting timed terminal event at 671.8
2025-08-25 18:15:54,097 sats.satellite.EO INFO <0.00> EO: RW Power Fault: RW1's power limit reduced to 1.0 Watts at 0.0 minutes!
2025-08-25 18:15:54,098 sats.satellite.EO INFO <0.50> EO: imaged Target(tgt-93)
2025-08-25 18:15:54,100 data.base INFO <0.50> Total reward: {'EO': 0.8196046614443331}
2025-08-25 18:15:54,100 comm.communication INFO <0.50> Optimizing data communication between all pairs of satellites
2025-08-25 18:15:54,101 sats.satellite.EO INFO <0.50> EO: Satellite EO requires retasking
2025-08-25 18:15:54,105 gym INFO <0.50> Step reward: 0.8196046614443331
2025-08-25 18:15:54,107 gym INFO <0.50> === STARTING STEP ===
2025-08-25 18:15:54,107 sats.satellite.EO INFO <0.50> EO: target index 12 tasked
2025-08-25 18:15:54,108 sats.satellite.EO INFO <0.50> EO: Target(tgt-804) tasked for imaging
2025-08-25 18:15:54,109 sats.satellite.EO INFO <0.50> EO: Target(tgt-804) window enabled: 1146.2 to 1196.2
2025-08-25 18:15:54,110 sats.satellite.EO INFO <0.50> EO: setting timed terminal event at 1196.2
2025-08-25 18:15:54,111 sats.satellite.EO INFO <1.00> EO: imaged Target(tgt-804)
2025-08-25 18:15:54,113 data.base INFO <1.00> Total reward: {'EO': 0.7384995398085523}
2025-08-25 18:15:54,114 comm.communication INFO <1.00> Optimizing data communication between all pairs of satellites
2025-08-25 18:15:54,115 sats.satellite.EO INFO <1.00> EO: Satellite EO requires retasking
2025-08-25 18:15:54,119 gym INFO <1.00> Step reward: 0.7384995398085523
2025-08-25 18:15:54,121 gym INFO <1.00> === STARTING STEP ===
2025-08-25 18:15:54,121 sats.satellite.EO INFO <1.00> EO: target index 28 tasked
2025-08-25 18:15:54,121 sats.satellite.EO INFO <1.00> EO: Target(tgt-146) tasked for imaging
2025-08-25 18:15:54,123 sats.satellite.EO INFO <1.00> EO: Target(tgt-146) window enabled: 2874.9 to 2909.4
2025-08-25 18:15:54,123 sats.satellite.EO INFO <1.00> EO: setting timed terminal event at 2909.4
2025-08-25 18:15:54,125 sats.satellite.EO INFO <1.50> EO: imaged Target(tgt-146)
2025-08-25 18:15:54,126 data.base INFO <1.50> Total reward: {'EO': 0.010627938976362383}
2025-08-25 18:15:54,127 comm.communication INFO <1.50> Optimizing data communication between all pairs of satellites
2025-08-25 18:15:54,128 sats.satellite.EO INFO <1.50> EO: Satellite EO requires retasking
2025-08-25 18:15:54,133 gym INFO <1.50> Step reward: 0.010627938976362383
2025-08-25 18:15:54,134 gym INFO <1.50> === STARTING STEP ===
2025-08-25 18:15:54,134 sats.satellite.EO INFO <1.50> EO: target index 2 tasked
2025-08-25 18:15:54,135 sats.satellite.EO INFO <1.50> EO: Target(tgt-38) tasked for imaging
2025-08-25 18:15:54,137 sats.satellite.EO INFO <1.50> EO: Target(tgt-38) window enabled: 354.3 to 376.5
2025-08-25 18:15:54,137 sats.satellite.EO INFO <1.50> EO: setting timed terminal event at 376.5
2025-08-25 18:15:54,139 sats.satellite.EO INFO <2.00> EO: imaged Target(tgt-38)
2025-08-25 18:15:54,140 data.base INFO <2.00> Total reward: {'EO': 0.6931851990942818}
2025-08-25 18:15:54,141 comm.communication INFO <2.00> Optimizing data communication between all pairs of satellites
2025-08-25 18:15:54,142 sats.satellite.EO INFO <2.00> EO: Satellite EO requires retasking
2025-08-25 18:15:54,146 gym INFO <2.00> Step reward: 0.6931851990942818
2025-08-25 18:15:54,147 gym INFO <2.00> === STARTING STEP ===
2025-08-25 18:15:54,148 sats.satellite.EO INFO <2.00> EO: target index 3 tasked
2025-08-25 18:15:54,149 sats.satellite.EO INFO <2.00> EO: Target(tgt-706) tasked for imaging
2025-08-25 18:15:54,150 sats.satellite.EO INFO <2.00> EO: Target(tgt-706) window enabled: 409.7 to 464.9
2025-08-25 18:15:54,151 sats.satellite.EO INFO <2.00> EO: setting timed terminal event at 464.9
2025-08-25 18:15:54,152 sats.satellite.EO INFO <2.50> EO: imaged Target(tgt-706)
2025-08-25 18:15:54,154 data.base INFO <2.50> Total reward: {'EO': 0.5711709172856598}
2025-08-25 18:15:54,154 comm.communication INFO <2.50> Optimizing data communication between all pairs of satellites
2025-08-25 18:15:54,155 sats.satellite.EO INFO <2.50> EO: Satellite EO requires retasking
2025-08-25 18:15:54,159 gym INFO <2.50> Step reward: 0.5711709172856598
2025-08-25 18:15:54,161 gym INFO <2.50> === STARTING STEP ===
2025-08-25 18:15:54,161 sats.satellite.EO INFO <2.50> EO: target index 31 tasked
2025-08-25 18:15:54,162 sats.satellite.EO INFO <2.50> EO: Target(tgt-841) tasked for imaging
2025-08-25 18:15:54,163 sats.satellite.EO INFO <2.50> EO: Target(tgt-841) window enabled: 3173.1 to 3281.6
2025-08-25 18:15:54,164 sats.satellite.EO INFO <2.50> EO: setting timed terminal event at 3281.6
2025-08-25 18:15:54,165 sats.satellite.EO INFO <3.00> EO: imaged Target(tgt-841)
2025-08-25 18:15:54,167 data.base INFO <3.00> Total reward: {'EO': 0.3012131927347734}
2025-08-25 18:15:54,167 comm.communication INFO <3.00> Optimizing data communication between all pairs of satellites
2025-08-25 18:15:54,168 sats.satellite.EO INFO <3.00> EO: Satellite EO requires retasking
2025-08-25 18:15:54,173 gym INFO <3.00> Step reward: 0.3012131927347734
2025-08-25 18:15:54,174 gym INFO <3.00> === STARTING STEP ===
2025-08-25 18:15:54,174 sats.satellite.EO INFO <3.00> EO: target index 17 tasked
2025-08-25 18:15:54,175 sats.satellite.EO INFO <3.00> EO: Target(tgt-842) tasked for imaging
2025-08-25 18:15:54,177 sats.satellite.EO INFO <3.00> EO: Target(tgt-842) window enabled: 1958.3 to 2072.1
2025-08-25 18:15:54,177 sats.satellite.EO INFO <3.00> EO: setting timed terminal event at 2072.1
2025-08-25 18:15:54,178 sats.satellite.EO INFO <3.50> EO: imaged Target(tgt-842)
2025-08-25 18:15:54,180 data.base INFO <3.50> Total reward: {'EO': 0.1929743249397491}
2025-08-25 18:15:54,180 comm.communication INFO <3.50> Optimizing data communication between all pairs of satellites
2025-08-25 18:15:54,182 sats.satellite.EO INFO <3.50> EO: Satellite EO requires retasking
2025-08-25 18:15:54,186 gym INFO <3.50> Step reward: 0.1929743249397491
2025-08-25 18:15:54,187 gym INFO <3.50> === STARTING STEP ===
2025-08-25 18:15:54,187 sats.satellite.EO INFO <3.50> EO: target index 22 tasked
2025-08-25 18:15:54,188 sats.satellite.EO INFO <3.50> EO: Target(tgt-500) tasked for imaging
2025-08-25 18:15:54,190 sats.satellite.EO INFO <3.50> EO: Target(tgt-500) window enabled: 2436.6 to 2543.4
2025-08-25 18:15:54,190 sats.satellite.EO INFO <3.50> EO: setting timed terminal event at 2543.4
2025-08-25 18:15:54,192 sats.satellite.EO INFO <4.00> EO: imaged Target(tgt-500)
2025-08-25 18:15:54,193 data.base INFO <4.00> Total reward: {'EO': 0.9065897890064923}
2025-08-25 18:15:54,194 comm.communication INFO <4.00> Optimizing data communication between all pairs of satellites
2025-08-25 18:15:54,195 sats.satellite.EO INFO <4.00> EO: Satellite EO requires retasking
2025-08-25 18:15:54,199 gym INFO <4.00> Step reward: 0.9065897890064923
2025-08-25 18:15:54,201 gym INFO <4.00> === STARTING STEP ===
2025-08-25 18:15:54,201 sats.satellite.EO INFO <4.00> EO: target index 19 tasked
2025-08-25 18:15:54,201 sats.satellite.EO INFO <4.00> EO: Target(tgt-208) tasked for imaging
2025-08-25 18:15:54,203 sats.satellite.EO INFO <4.00> EO: Target(tgt-208) window enabled: 2260.7 to 2359.2
2025-08-25 18:15:54,203 sats.satellite.EO INFO <4.00> EO: setting timed terminal event at 2359.2
2025-08-25 18:15:54,205 sats.satellite.EO INFO <4.50> EO: imaged Target(tgt-208)
2025-08-25 18:15:54,206 data.base INFO <4.50> Total reward: {'EO': 0.8270836989643272}
2025-08-25 18:15:54,207 comm.communication INFO <4.50> Optimizing data communication between all pairs of satellites
2025-08-25 18:15:54,208 sats.satellite.EO INFO <4.50> EO: Satellite EO requires retasking
2025-08-25 18:15:54,212 gym INFO <4.50> Step reward: 0.8270836989643272
2025-08-25 18:15:54,213 gym INFO <4.50> === STARTING STEP ===
2025-08-25 18:15:54,214 sats.satellite.EO INFO <4.50> EO: target index 15 tasked
2025-08-25 18:15:54,215 sats.satellite.EO INFO <4.50> EO: Target(tgt-239) tasked for imaging
2025-08-25 18:15:54,216 sats.satellite.EO INFO <4.50> EO: Target(tgt-239) window enabled: 1758.4 to 1865.8
2025-08-25 18:15:54,217 sats.satellite.EO INFO <4.50> EO: setting timed terminal event at 1865.8
2025-08-25 18:15:54,365 sim.simulator INFO <304.50> Max step duration reached
2025-08-25 18:15:54,367 data.base INFO <304.50> Total reward: {}
2025-08-25 18:15:54,367 comm.communication INFO <304.50> Optimizing data communication between all pairs of satellites
2025-08-25 18:15:54,373 sats.satellite.EO WARNING <304.50> EO: failed rw_speeds_valid check
2025-08-25 18:15:54,373 gym INFO <304.50> Step reward: 0.0
2025-08-25 18:15:54,374 gym INFO <304.50> Episode terminated: True
2025-08-25 18:15:54,375 gym INFO <304.50> Episode truncated: False
Episode complete.
Total reward: 5.060949262254532