Module: lambertValidator

Executive Summary

This module computes the required Delta-V to change the spacecraft velocity to the one obtained by the Module: lambertSolver module and checks if the resulting trajectory comes too close to the central body or too far away from the desired target location. The current spacecraft state from the NavTransMsgPayload navigation input message is propagated to the maneuver time \(t_{maneuver}\) using a 4th order Runge-Kutta (RK4) to obtain the expected state just before the Delta-V maneuver. The computed Delta-V and the specified state uncertainty are added to generate a set of initial states right after the maneuver. These initial states are propagated to the final time \(t_{final}\) where the spacecraft is supposed to arrive at the targeted position \({}^N\mathbf{r}_{T/N}\). If the final distance from the target position is less than the specified maximum distance \(r_{TB,max}\) for all trajectories, and none of the trajectories comes closer than \(r_{min}\) to the central body, the computed Delta-V is written to the DvBurnCmdMsgPayload output message. If any of these constraints are violated, the message content remains zero. The message is also zeroed if the LambertSolutionMsgPayload or LambertPerformanceMsgPayload messages indicate that the Lambert solution is not valid or has not converged yet.

Message Connection Descriptions

The following table lists all the module input and output messages. The module msg connection is set by the user from python. The msg type contains a link to the message structure definition, while the description provides information on what this message is used for.

Module I/O Messages

Msg Variable Name

Msg Type

Description

navTransInMsg

NavTransMsgPayload

translational navigation input message

lambertProblemInMsg

LambertProblemMsgPayload

lambert problem setup input message

lambertSolutionInMsg

LambertSolutionMsgPayload

lambert problem solution input message

lambertPerformanceInMsg

LambertPerformanceMsgPayload

lambert problem performance message (additional information about the solution process)

dvBurnCmdOutMsg

DvBurnCmdMsgPayload

Delta-V command output message

Module Assumptions and Limitations

The equations of motion used inside the module to propagate the state assume simple two body point mass gravity, and the motion is propagated using a 4th order Runge-Kutta (RK4). Additionally, this module assumes that \(t_{final} > t_{maneuver} > t\), with final time \(t_{final}\), maneuver time \(t_{maneuver}\) and current time \(t\).

Algorithm

Equations of motion (two body point mass gravity) with gravitational parameter \(\mu\) and spacecraft position vector \(\mathbf{r}\):

(1)\[\mathbf{\ddot{r}} = - \frac{\mu}{r^3} \mathbf{r}\]

The 27 perturbed initial states that are propagated to check for any constraint violations are obtained in the following way: The uncertainty of each state, specified by the 6x6 matrix “uncertaintyStates” in Hill frame components, is added to each state in the plus and minus direction. For \(N=6\) states, this gives \(2 \times N = 12\) initial states. The uncertainty of the Delta-V magnitude is applied to the Delta-V vector for each of those initial states, both in the Delta-V direction and against the Delta-V direction (corresponding to maximum and minimum expected DV magnitude). Applied to the 12 initial states, this gives 24 states. The last 3 initial states are obtained by applying the maximum and minimum expected DV to the unperturbed spacecraft state (+2), and by leaving the state and Delta-V vector entirely unperturbed (+1).

User Guide

The module is first initialized as follows:

module = lambertValidator.LambertValidator()
module.ModelTag = "lambertValidator"
module.setFinalTime(2000.)
module.setManeuverTime(1000.)
module.setMaxDistanceTarget(3000.)
module.setMinOrbitRadius(6378 * 1000.)
module.setUncertaintyStates(np.diag([5., 5., 5., 0.01, 0.01, 0.001]))  # in Hill frame
module.setUncertaintyDV(0.1)   # [m/s]
module.setDvConvergenceTolerance(0.01)    # [m/s]
unitTestSim.AddModelToTask(unitTaskName, module)

The input messages are then connected:

module.navTransInMsg.subscribeTo(navTransInMsg)
module.lambertProblemInMsg.subscribeTo(lambertProblemInMsg)
module.lambertPerformanceInMsg.subscribeTo(lambertPerformanceInMsg)
module.lambertSolutionInMsg.subscribeTo(lambertSolutionInMsg)

Defines

NUM_INITIALSTATES
class LambertValidator : public SysModel
#include <lambertValidator.h>

This module validates if the Lambert velocity solution violates any constraints and, if not, creates the Delta-V burn command message.

Public Functions

LambertValidator()

This is the constructor for the module class. It sets default variable values and initializes the various parts of the model

~LambertValidator()

Module Destructor

void Reset(uint64_t currentSimNanos) override

This method is used to reset the module and checks that required input messages are connected.

Parameters:

currentSimNanos – current simulation time in nano-seconds

void UpdateState(uint64_t currentSimNanos) override

This is the main method that gets called every time the module is updated.

Parameters:

currentSimNanos – current simulation time in nano-seconds

void setLambertSolutionSpecifier(const double value)

setter for lambertSolutionSpecifier

inline double getLambertSolutionSpecifier() const

getter for lambertSolutionSpecifier

void setFinalTime(const double value)

setter for finalTime

inline double getFinalTime() const

getter for finalTime

void setManeuverTime(const double value)

setter for maneuverTime

inline double getManeuverTime() const

getter for maneuverTime

void setMaxDistanceTarget(const double value)

setter for maxDistanceTarget

inline double getMaxDistanceTarget() const

getter for maxDistanceTarget

void setMinOrbitRadius(const double value)

setter for minOrbitRadius

inline double getMinOrbitRadius() const

getter for minOrbitRadius

void setUncertaintyStates(const Eigen::MatrixXd &value)

setter for uncertaintyStates

inline Eigen::MatrixXd getUncertaintyStates() const

getter for uncertaintyStates

void setUncertaintyDV(const double value)

setter for uncertaintyDV

inline double getUncertaintyDV() const

getter for uncertaintyDV

void setDvConvergenceTolerance(const double value)

setter for dvConvergenceTolerance

inline double getDvConvergenceTolerance() const

getter for dvConvergenceTolerance

void setIgnoreConstraintViolations(const bool value)

setter for ignoreConstraintViolations

inline bool getIgnoreConstraintViolations() const

getter for ignoreConstraintViolations

Public Members

ReadFunctor<NavTransMsgPayload> navTransInMsg

translational navigation input message

ReadFunctor<LambertProblemMsgPayload> lambertProblemInMsg

lambert problem input message

ReadFunctor<LambertSolutionMsgPayload> lambertSolutionInMsg

lambert solution input message

ReadFunctor<LambertPerformanceMsgPayload> lambertPerformanceInMsg

lambert performance input message

Message<DvBurnCmdMsgPayload> dvBurnCmdOutMsg

Delta-V burn command message.

Message<LambertValidatorMsgPayload> lambertValidatorOutMsg

Lambert Validator results message.

BSKLogger bskLogger

BSK Logging.

Private Functions

void readMessages()

This method reads the input messages each call of updateState. It also checks if the message contents are valid for this module.

void writeMessages(uint64_t currentSimNanos)

This method writes the output messages each call of updateState

Parameters:

currentSimNanos – current simulation time in nano-seconds

std::array<Eigen::VectorXd, NUM_INITIALSTATES> getInitialStates()

This method creates the initial state vectors that will be propagated by the module

Returns:

std::array<Eigen::VectorXd, NUM_INITIALSTATES>

void countViolations(std::array<Eigen::VectorXd, NUM_INITIALSTATES> initialStates)

This method propagates the various initial states and counts the number of constraints that are violated

Parameters:

initialStates – array of initial state vectors to be propagated

void checkConstraintViolations(std::vector<double> t, std::vector<Eigen::VectorXd> X)

This method checks if the provided trajectory violates any constraints

Parameters:
  • t – time steps

  • X – state for each time step

bool checkPerformance() const

This method returns true only if the Lambert solution is valid, converged, and no constraints are violated

Returns:

bool

std::pair<std::vector<double>, std::vector<Eigen::VectorXd>> propagate(const std::function<Eigen::VectorXd(double, Eigen::VectorXd)> &EOM, std::array<double, 2> interval, const Eigen::VectorXd &X0, double dt)

This method integrates the provided equations of motion using Runge-Kutta 4 (RK4) and returns the time steps and state vectors at each time step.

Parameters:
  • EOM – equations of motion function to be propagated

  • interval – integration interval

  • X0 – initial state

  • dt – time step

Returns:

std::pair<std::vector<double>, std::vector<Eigen::VectorXd>>

Eigen::VectorXd RK4(const std::function<Eigen::VectorXd(double, Eigen::VectorXd)> &ODEfunction, const Eigen::VectorXd &X0, double t0, double dt)

This method provides the 4th order Runge-Kutta (RK4)

Parameters:
  • ODEfunction – function handle that includes the equations of motion

  • X0 – initial state

  • t0 – initial time

  • dt – time step

Returns:

Eigen::VectorXd

Private Members

double lambertSolutionSpecifier = 1

[-] which Lambert solution (1 or 2), if applicable, should be used

double finalTime = {}

[s] time at which target position should be reached

double maneuverTime = {}

[s] time at which maneuver should be executed

double maxDistanceTarget = {}

[m] maximum acceptable distance from target location at final time

double minOrbitRadius = {}

[m] minimum acceptable orbit radius

Eigen::MatrixXd uncertaintyStates

6x6 matrix square root of the covariance matrix of errors, in Hill frame

double uncertaintyDV = 0.1

[m/s] uncertainty of the Delta-V magnitude

double dvConvergenceTolerance = 1e-3

[m/s] tolerance on difference between DeltaV solutions between time steps

bool ignoreConstraintViolations = false

override flag to write DV message despite constraint violations

double time = {}

[s] Current vehicle time-tag associated with measurements

Eigen::Vector3d r_N

[m] Current inertial spacecraft position vector in inertial frame N components

Eigen::Vector3d v_N

[m/s] Current inertial velocity of the spacecraft in inertial frame N components

double mu = {}

[m^3 s^-2] gravitational parameter

Eigen::Vector3d r_TN_N

[m] Targeted position vector with respect to celestial body at finalTime, in N frame

Eigen::Vector3d vLambert_N

[m/s] Lambert velocity solution at maneuver time in inertial frame N components

int validLambert = {}

[-] valid Lambert solution if 1, not if 0

double xLambert = {}

[-] solution for free variable (iteration variable) of Lambert problem

int numIterLambert = {}

[-] number of root-finder iterations to find x

double errXLambert = {}

[-] difference in x between last and second-to-last iteration

double prevLambertSolutionX = 0

[-] solution of Lambert problem from previous time step

Eigen::Vector3d prevDv_N = {}

solution for Delta-V from previous time step

Eigen::Vector3d rm_N

[m] Expected inertial spacecraft position vector at maneuver time tm in inertial frame N

Eigen::Vector3d vm_N

[m/s] Expected inertial spacecraft velocity vector at maneuver time tm in inertial frame

Eigen::Vector3d dv_N

[m/s] requested Delta-V in N frame components

Eigen::Matrix3d dcm_HN

[-] direction cosine matrix (DCM) from inertial frame N to Hill frame H

int violationsDistanceTarget = 0

[-] number of violations of the maxDistanceTarget constraint

int violationsOrbitRadius = 0

[-] number of violations of the minOrbitRadius constraint

double timestep = 10.

[s] time step used for RK4 propagation

std::function<Eigen::VectorXd(double, Eigen::VectorXd)> EOM_2BP

equations of motion to be used for RK4

int maxNumIterLambert = 6

[-] maximum number of iterations for Lambert solver root finder to find x

double xToleranceLambert = 1e-8

[-] tolerance for Lambert solver root finder to find x

double xConvergenceTolerance = 1e-2

[-] tolerance on difference between x solutions between time steps